ガンマ線バーストの長期放射に伴う 高エネルギーニュートリノ放射

松井理輝,木村成生(東北大学)

日本天文学会2023年秋季年会

Gamma-Ray Burst (GRB)

The most luminous transient (in EM wave). Mechanism ? Central object ? (Progenitor ?)

[NSF/LIGO/Sonoma State University/A. Simonn

Pe'er +15

Relativistic Jets with $v \sim c$, $\Gamma \sim 100$

Late-time Emission of Gamma-Ray Burst

(~ 2/3 of SGRBs)

"Extended Emission"

Long GRB

(~ 1/3 of LGRBs)

Prolonged central enigine activity

Standard Scenario for late-time emission :

Prolonged central enigine activity

Problem :

d Scenario for late-time emission : QUESTION ad engine activity & Jet dissipation

Properties of the late-time jet are unknown.

Prolonged Engine and Cocoon Scenario See also, Kimura+19 (γ), Hamid+21, 23 (simu), Mei+22 (γ , obs)

Prompt emission $T_{obs} \sim 0$ s

Jet launch t = 0 s

Break out $t < \sim 1$ s

Late-time emission $T_{\rm obs} \sim 100 - 1000 \, {\rm s}$ Cocoon Dissipation

Based on Prolonged jet model

Prolonged Engine and Cocoon Scenario See also, Kimura+19 (γ), Hamid+21, 23 (simu), Mei+22 (γ , obs)

Prompt emission $T_{obs} \sim 0$ s

Jet launch t = 0 s

Break out $t < \sim 1$ s

Late-time emission $T_{\rm obs} \sim 100 - 1000 \, {\rm s}$

Results 1 : Neutrino Spectra

Extended Emission $\log_{10}(\varepsilon_{\nu_{\mu}}^{2}\phi_{\varepsilon_{\nu_{\mu}}}/\text{GeV cm}^{-2})$ RM + 238 $\log_{10}(\varepsilon_{\nu_{\mu}}/\text{GeV})$ Without Cocoon

Results 2 : Expected Number of Detection

Results 3 : Operation time

Neutrinos are 90% detectable in 10 years (Gen2, E.E of local sGRB). X-ray flares take more than 30 years.

Cosmological GRB

Typical distance : $z \sim 0.5$ (SGRB) / $z \sim 2$ (LGRB) Rough estimation Flux $\propto d_L^{-2}$, Event rate $\propto d_L^3 \rightarrow \text{Neutrino signal } \propto d_L$ Exactly,

- . Event rate $\propto d_L^3 f(z)/(1+z)^4$

Flux : Comparable with the atomospheric BG ?

Model Parameters

Table 1. fiducial parameters rumber density								
Parameters	Γ_j	$t_{ m dur}$	L_{X}	$r_{ m dis}$	$arepsilon_{\gamma,\mathrm{pk}}$	$\theta_i = 5^\circ$		
		(s)	(erg/s)	(cm)	(keV)			
Extended	200	$10^{2.5}$	10^{48}	10^{12}	10	$\xi_p = U_p / U_{\gamma},$		
Plateau	100	10^{4}	10^{46}	10^{13}	1	$\xi_B = U_B / U_{\gamma}$		
either case	$p_{ m inj}$	ξ_p	ξ_B	d_L	Energy band	$\epsilon_p = U_p / U_k \sim 0.3,$		
				(Mpc)	(keV)	$\epsilon_R = U_R / U_k \sim 0.01$		
	2.0	10	0.33	300	0.3 - 10 (XRT)			
	Proto	on nu	mber					

Discussion : Constraints on physics of sGRB

Propaty of late-time Jet

- How jets dissipated ?

Summary

- prolonged engine activity model and cocoon photons.
- Neutrinos should be detected from GRBs in 10 years. (Gen2:90%)

 We calculated the neutrino emission associated with the late-time emission of Gamma-Ray Bursts, considering the

. 1 neutrino will be detected with 10 local GRBs ($d_L \sim 300$ Mpc)

 The dissipation radius and the Lorentz factor of late-time jet will be constrained by the high energy observation in the future.

Take-home message

X線と相関して見つかるかも (特に重力波も相関する、 SGRBのExtended emission に注目)

ガンマ線バーストの100-1000 s後に 100 TeV - 1 PeV のニュートリノが

Back Up

Method 1: Neutrino emission

Neutrino Spectrum (One-Zone approx.)

$$\frac{dN_{\nu_{\mu}}}{d\varepsilon_{\nu_{\mu}}} \approx \frac{1}{8} f_{p\gamma} \varepsilon_{p}^{2} \frac{dN_{p}}{d\varepsilon_{p}} \bigg|_{\varepsilon_{p} = \varepsilon_{\nu_{\mu}}/0.05},$$

ere $f_{p\gamma} = t'_{cool}/t'_{p\gamma}$,

$$= \left(\frac{c}{2\gamma_p^{\prime 2}}\int_{\bar{\varepsilon}_{th}}^{\infty} d\bar{\varepsilon}_{\gamma}\sigma_{p\gamma}\kappa_{p\gamma}\bar{\varepsilon}_{\gamma}\int_{\bar{\varepsilon}_{\gamma}/2\gamma_p}^{\infty} d\varepsilon_{\gamma}^{\prime}\varepsilon_{\gamma}^{\prime-2}\frac{dn_{\gamma}^{\prime}}{d\varepsilon_{\gamma}^{\prime}}\right) \sim n_{\gamma}\sigma C$$

+ diffusive acceleration $| t'_{acc} |$ Spectra of Photon and Proton are required.

Method 2 : Photons in Dissipation Region

Photon Spectrum

- Internal photons (Kimura +17) $\frac{dn'^{\text{in}}}{d\varepsilon'_{\gamma}} \propto \varepsilon_{\gamma}'^{-0.5} \qquad (\varepsilon'_{\gamma} \ge \varepsilon'_{\gamma,\text{pk}})$ $\propto \varepsilon_{\gamma}'^{-2} \qquad (\varepsilon'_{\gamma} < \varepsilon'_{\gamma,\text{pk}})$
- Cocoon photons (←New)

 $k_B T_{\rm coc} \sim 20 \ {\rm eV}$

Method 3 : Protons in Dissipation Region

Proton (Cosmic-Ray) Spectrum

$$\frac{V_p}{P_p} = N_{\varepsilon_p, \text{nor}} \left(\frac{\varepsilon_p}{\varepsilon_{p, \text{cut}}}\right)^{-2} \exp\left(-\frac{\varepsilon_p}{\varepsilon_{p, \text{cut}}}\right),$$

(assuming Fermi accelelation)

here
$$t_{\rm acc}^{'-1}(\varepsilon_p') = t_{\rm cool}^{'-1}(\varepsilon_p') \longrightarrow \varepsilon_{p,{\rm cut}}$$

)

Cocoon model for Extended emission

 T_{coc} : Cocoon temperature (Kimura+19)

 $T_{\rm coc} = (3\mathscr{E}_{\rm coc}/4\pi R_{\rm coc}^3 a_{\rm rad})^{1/4}$

 $R_{coc} = 3 \times 10^{12} (t_{dur}/10^{2.5} \text{s}) \text{ cm} \quad \text{(Constant velocity)}$

Part of initial internal energy

 $v_{\rm coc}, E_{\rm kin, coc}, E_{\rm int, coc}$ (at break out time) from Hamidani +20

 $\mathscr{C}_{coc} = 8.8 \times 10^{44} (t_{dur}/10^{2.5} \text{s})^{-1} \text{erg} + 9.3 \times 10^{44} (t_{dur}/10^{2.5} \text{s})^{-0.3} \text{erg}$ Injected by radioactive decay

Emprical relation for Extended emission

- . Duration, $\log t_{dur}$: Gaussian by Observational data
- $L_X \propto t_{dur}^{-2.5}$ (Emprical Low, Kisaka +17)
- Location : homogenous, $d_L < 300 Mpc$
- Event rate : $R_{sGRB} \sim 8 \text{ Gpc}^{-3} \text{yr}^{-1}$

(Kisaka +17)

 -
 -
_

Cocoon model for X-ray flare

Internal energy density : $aT_{coc}^4 = \frac{E_{i,coc,br}}{4\pi r_{dicc}^3/3} \frac{r_*}{ct_{flare}}$

Internal E. at break out : $E_{i,coc,br} = L_i t_b \times (1 - \beta_h)$ (Hamidani & Ioka 2022) Jet (kinetic) luminosity : $L_i = L_{k,iso}\theta_i^2/4$

break out time : $t_b = 0.9 (r_*^2 \theta_i^4 M_* / L_j)^{1/3}$ (Hamidani & Ioka 2022)

Jet velocity before break out : $\beta_h = r_*/ct_h$

where Prompt emission Luminosity : L_{prompt,iso}, Steller mass, radius : M_* , r_* ,

Jet isotropic-equivalent luminnosity : $L_{k,iso} = 30 L_{prompt,iso}$

Dissipation radis : r_{diss} , Jet opening angle θ_i ,

Emprical relation and distribution for X-ray flare

Prompt emission (radiation) luminonsity : $L_{\text{prompt,iso}} \sim 30 L_{\text{x,flare}}$ X-ray flare luminosity : $L_{x,iso} = 1.3 \times 10^{48} \times (t_{flare,3} (1 + z))^{-1.02} \text{erg/s}$ Duration of X-ray flare : $t_{dur} = 450 \times (t_{flare,3} (1 + z))^{1.12}$ s Distribution of t_{flare} : $F(t_{\text{flare}}) dt_{\text{flare}} \propto t_{\text{flare}}^{-1.72} dt_{\text{flare}}$ where X-ray flare peak time : t_{flare} , $t_{\text{flare},3} = t_{\text{flare}}/(1000 \text{ s})$

