日本天文学会 2023年秋季年会 Z110a

キロノバのスペクトルで探る 中性子星合体の元素合成

土本菜々恵 (東北大学)

田中雅臣 (東北大学), 加藤太治 (核融合科学研究所), 川口恭平 (AEI, 東京大学ICRR), 仏坂健太 (東京大学RESCEU), 和南城伸也 (AEI)

Domoto et al. 2021, ApJ, 913, 26 Domoto et al. 2022, ApJ, 939, 8

"Kilonova"

Radioactively-powered thermal emission from neutron star merger

e.g., Lattimer & Schramm 74, Eichler+89, Li & Paczynski 98, Freiburghaus+99, Metzger+10, Goriely+11, Roberts+11, Tanaka & Hotokezaka 13...

Kilonova in GW170817

Day 1.17-1.70

Utsumi+17

e.g., Arcavi+17, Smartt+17, Kasen+17, Kilpatrick+17, Perego+17, Rosswog+17, Shibata+17, Tanaka+17, Toroja+17, ...

Which and how much elements?

Watson+19, Domoto+21, Gillanders+22 Perego+22, Tarumi+23

Atomic data

How can we study spectra?

1. Find species having strong transitions (thanks to the complete data)

2. Extend "accurate" data of strong transitions w/ theoretical prob.

Systematic search of candidate species

Ca II, Sr II, Y II, Zr II, La III, and Ce III can be strong absorption sources

Small number of valence electrons:

- Small number of transitions \rightarrow higher transition probability (sum rule)
- Low-lying energy levels \rightarrow higher population

Same as the Sun!

Radiative transfer simulations

Tanaka & Hotokezaka 2013, Tanaka+14, 17, Kawaguchi+18, 20

Calculate realistic synthetic spectra considering ejecta structure

Ejecta model:

- Mass: Mej = 0.03 Msun
- Velocity: v = 0.05-0.3 c
- Density: 1D power law ($\rho \propto r^{-3}$)
- Assume solar-r-like abundance pattern model (homogeneous distribution)

Ionization/population: LTE (Saha eq. + Boltzmann dist.)

Atomic data: new hybrid atomic data

Monte Carlo radiative transfer

→ Realistic spectral shapes & features

Synthetic spectra

Strong lines of each ion produce absorption lines

Comparison with observations

Sr and Ca have similar atomic structures and transitions X(Ca)/X(Sr) < 0.002 in GW170817

Tracer of physical conditions

→Velocity and entropy of high-Ye component is relatively high for GW170817

color: v=0.2 c & different entropies

Comparison with observations

La III and Ce III lines can explain the NIR observed features $X(La) > 2 \times 10^{-6}$, $X(Ce) \sim 10^{-5} - 10^{-3}$

Implication of elements in GW170817

Further possible constraint? How to reconstruct abundance pattern?

H ¹	ŀ														2 He		
3 Li	4 Be Watson+19; Gillanders+21; ND+21, 22; Vieira+23 (Vieira+23; Sneppen+23) ND+22 (; Gillanders+23)										5 B	C ⁶	7 N	8 O	9 F	10 Ne	
¹¹	12Hotokezaka+22, 23 (nebula)12Perego+22; Tarumi+23 (NLTE)Mg(Pognan+23, nebula)										13	¹⁴	15	16	17	18	
Na											Al	Si	P	S	Cl	Ar	
19	²⁰	21	22	23	24	²⁵	²⁶	27	28	29	30	31	32	33	³⁴	35	³⁶
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	⁵²	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57-71	72	73	74	⁷⁵	76	77	78	79	80	81	82	83	⁸⁴	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	⁸⁸	89-103	¹⁰⁴	105	106	107	¹⁰⁸	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
		. 4								0				

Summary

- The origin of elements, physics of NS mergers
- Identification of elements in spectra is direct way to study synthesized elements
- Which elements can produce absorption features?
- What information we can extract from absorption features?
- New atomic data by taking advantages of both experimental (accurate) and theoretical (complete) datasets
- Elements that can appear in spectra: Ca, Sr, Y, Zr, La, and Ce
 - At the left side of the periodic table
- Ca/Sr lines can be used as high-Ye tracer
- Mass fraction of La and Ce in GW170817 are estimated to be $<2x10^{-6}$ and $\sim10^{-3}\text{-}10^{-5}$ (direct estimation)