Non-thermal Coronal Activity in Seyfert Galaxies Yoshiyuki Inoue

Chiba Univ. Seminar @ Chiba, 2023-11-14

Introduction

Pathways to Discovery in Astronomy and Astrophysics for the 2020s

Key Scientific Challenges for the Next Decade

Worlds and Suns in Context

Priority Area: Pathways to Habitable Worlds

• Two frontiers in Multi-Messenger Astronomy:

- Gravitational Waves
- Neutrinos

New Messengers and New Physics Priority Area: New Windows on the Dynamic Universe

Cosmic Ecosystems

Priority Area: Unveiling the Drivers of Galaxy Growth

- CXB and CGB are dominated by Active Galactic Nuclei (AGNs).

• Cosmic Neutrino Flux level = $0.1 \times$ Cosmic GeV Gamma-ray Background (CGB) $= 10^{-3} \times \text{Cosmic X-ray Background}$ (CXB)

IceCube detection of TeV neutrinos from NGC 1068 Evidence of Non-thermal Activity in a Seyfert galaxy

What is NGC 1068? An obscured Seyfert galaxy with a weak jet activity

Where is the neutrino production site? "Neutrino flux > Gamma-ray flux" = Gamma-ray Optically-Thick Region

• Target photons : X-ray (~ 1 keV)

•
$$\tau_{\gamma\gamma} \approx \frac{\sigma_{\gamma\gamma}}{4\pi c} \epsilon_X^{-1} L_X R^{-1} \simeq 10^5 \left(\frac{\epsilon_X}{1 \text{ keV}}\right)^{-1} \frac{1}{R}$$

- Host galaxy : Unlikely
- X-ray binaries : Not enough (see Swartz+'11, YI+'21)
- Seyfert Corona (~10-100 R_s) : Most Likely

Neutrino Emission from Seyfert Corona High energy particle acceleration in AGN corona region?

NGC 1068: a cosmic obscured accelerator

- $\phi_{\nu_{\mu}+\bar{\nu}_{\mu}}(1.5 15 \text{ TeV}) \sim 4 \times 10^{-11} \text{ erg/cm}^2/\text{s}$
 - $L_{\nu_{\mu}+\bar{\nu}_{\mu}}(1.5-15 \text{ TeV}) \sim 10^{42} \text{ erg/s}$
 - $ightarrow L_{CR}(>10 \text{ TeV}) \sim 10^{43} \text{ erg/s}$
 - Note: $L_x \sim 3 7 \times 10^{43}$ erg/s
- If cosmic rays exist in corona region,
 - *pp* and/or *pγ* interactions can produce neutrino emission.

- (1) Y. Inoue et al., ApJL'20
- (2) K. Murase et al., PRL'20

Cosmic High Energy Background Radiation If Seyferts are neutrino sources,

- Seyferts can simultaneously explain
 - TeV neutrino background (see also Begelman+'90; Stecker+'92; Kalashev+'15; Murase+'20).
 - X-ray background (e.g., Ueda+'03, Ueda+'14).
 - MeV gamma-ray background (e.g., YI+'08, YI+'19, Murase+'20).

Another Seyfert candidate: NGC 4151 "2.9-sigma"

- At ICRC 2023, IceCube reported 2.9-sigma detections of NGC 4151 and CGCG 420-015.
- NGC 4151 is the apparently brightest Seyfert galaxy in X-ray band.
- But, have we seen any evidence of non-thermal activity in Seyfert galaxies?

Non-thermal Activity in Seyfert Galaxies

Do we see non-thermal activities in Seyferts? No, we haven't! Thermal emission dominates everything.

- If Seyferts are neutrino sources,
 - we should see non-thermal emission.
- BUT, thermal emission is everything.
- Where is non-thermal signature?

Hickox & Alexander+'16

Investigation of non-thermal activities in Seyferts X-ray? GeV? MeV?

- Cascade or Synchrotron Self-Compton for X-ray continuum (e.g., Kazanas & Ellison '86; Zdziarski '86)
 - Neutrino emission (Stecker+'92)
- But,
 - non-detection of power-law tail (e.g., Madejski+'95; Lin+'93)

X-ray emission is from black hole corona 100 keV hot plasma above/below accretion disks

Coronal Synchrotron emission? Magnetized corona can generate Syn emission

- Hot corona ~ 100 keV
 - Heated by magnetic activity? (e.g., Haardt & Maraschi '91; Liu, Mineshige, & Shibata '02; Beloborodov '17)
 - Non-thermal electrons in corona? (YI, Totani, & Ueda '08)
- Millimeter Coronal Synchrotron Emission (Di Matteo+'97; YI & Doi '14; Raginski & Laor '16)
 - Due to Synchrotron self-Absorption, we expect a spectral break at 10-1000 GHz (mm-wave).

YI & Doi '14

Coronal Magnetic Activity in Seyfert Galaxies

Do we understand all the activities in Seyferts? Mostly yes. But, mm-wave is still an open and accessible window!

- millimeter-wave band is not well investigated.
 - Why? Because of dust
- Dust emission would be much brighter than coronal synchrotron signals.

Hints of millimeter excess in nearby Seyferts A new component in AGN SED? Non-thermal coronal Synchrotron?

- (e.g., Antonucci & Barvainis'88; Barvainis+'96; Doi &
- Contamination of extended components?
- Multi-frequency property?

Structure of AGN core in the <10 pc scale Where is the origin of the mm excess?

- Dust torus?
 - spectral shape, not enough, variability
- Free-free?
 - spectral shape, not enough
- Jet?
 - radio-quiet, no blazar like activity

Corona

cm-mm spectrum of AGN core

Power-law mm spectrum : Evidence of non-thermal coronal activity

- Hybrid (thermal + non-thermal) corona model (YI & Doi '14)
- Non-thermal electron fraction: 0.03 (fixed)
 - Consistent with the MeV gamma-ray background spectrum (YI, Totani, & Ueda '08; YI+'19)
- Non-thermal electron index: 2.9
- Size: 40 r_s
- B-field strength : 10 G

Generation of non-thermal electrons in coronae

- Required CR injection index : ~2
 - 1st-order Fermi acceleration would explain the observed electrons
 - Other mechanisms may be difficult.
 - Because of **low magnetic field**.
- What is the acceleration mechanism?
 - Time variability is a key to answer this question.
- Note: more ALMA samples are needed.

High energy emission from AGN coronae Multi-messenger Signature: MeV Gamma-ray & TeV Neutrinos

- MeV emission
 - but, no GeV emission
- Protons would be accelerated
 - high energy neutrinos
- Proton power is determined to reproduce the data
- See also Stecker+'91, '92, '05, '13; Kalashev+'15; Murase+'20; Gutiérrez +'21; Kheirandish+'21

ALMA Observations toward the NGC 1068 Core mm excess is there

- Based on our analysis (YI+'20; Michiyama, YI+2023.)
- Corona Size: $\sim 10-30 r_s$
- Coronal B-field: ~20-100 G
- More ALMA data would be necessary to clarify coronal property.

How can we test the corona model? ALMA? ngVLA? JEDI? COSI-X? GRAMS? AMEGO? IceCube-Gen2? KM3Net? XRISM?

mm-excess MeV spectral tail

TeV v without GeV-TeV γ

Nuclear spallation in X-ray

Finding Neutrino-Loud Seyferts? A synergy among neutrinos, Hard X-ray, and mm is important

- Dust torus attenuates Optical/X-ray emission.
 - Hard X-ray survey (e.g., BAT catalog)
- BUT, if Compton-thick, even hard X-ray can be absorbed
 - Column density : $N_{\rm H} > 1.5 \times 10^{24} {\rm ~cm^{-2}}$
 - NGC 1068 is a Compton-thick AGN
- mm-wave (ALMA, ngVLA) will not be attenuated.
 - BAT survey + follow-up by (ALMA + IceCube/KM3NeT/ TRIDENT?) is the best solution.

Coronal Magnetic Field?

cm-mm spectrum of AGN core

Power-law mm spectrum : Evidence of non-thermal coronal activity

- Hybrid (thermal + non-thermal) corona model (YI & Doi '14)
- Non-thermal electron fraction: 0.03 (fixed)
 - Consistent with the MeV gamma-ray background spectrum (YI, Totani, & Ueda '08; YI+'19)
- Non-thermal electron index: 2.9
- Size: 40 r_s
- B-field strength : 10 G

How can we heat up corona? Implication for the truncated accretion disk structure

- Heating vs Cooling
 - Magnetic Heating: $B^2 V_A / 4\pi$
 - $Q_{B, heat} \sim 10^{10} \text{ erg/cm}^2/\text{s}$
 - Compton Cooling: $4kTn_{e}\sigma_{T}cU_{rad}l/m_{e}c^{2}$
 - $Q_{IC, cool} \sim 10^{13} \, erg/cm^2/s$
 - Magnetic field energy is NOT sufficient to keep coronae hot.

- Disk truncation at some radii (e.g. ~40 r_s)
 - The inner part = hot accretion flow (Ichimaru '77, Narayan & Yi '94, '95).
 - Heated by advection.
 - We can expect $kT_{e} \sim 86 \text{ keV} (\tau_{T}/1.1)^{2/5} (YI+'19)$
 - Suggested for Galactic X-ray binaries. (e.g. Poutanen+'97; Kawabata+'10; Yamada+'13).

Plasma beta is too high? (too low magnetic field?) Are weak-jet AGNs MAD or not MAD?

- Our ALMA analysis suggests
 - coronal B-field is ~10-30 G at 30 r_s.
 - In terms of plasma beta ($\beta \equiv p_{gas}/p_{mag}$), we have $\beta \sim 10 - 100$.
 - Gas pressure dominates the accretion dynamics.
- However, recent numerical simulations suggest $\beta \ll 1$ for some cases (e.g., McKinney+'12; Tchekhovskoy+'11; Liska+'23)
 - so-called magnetically arrested disk (MAD; Narayan'03)

We are observing AGNs without powerful jets MAD is needed for powerful jet production

SMBH Spins and Dichotomy of AGNs B of RL and RQ AGNs should be different because $P_{\text{jet}} \approx P_{\text{BZ}} \propto x_a^2 f(x_a) \phi_{\text{BH}}^2 \dot{M}_{\text{in}} c^2 \approx a^2 B^2$

• Same spins *a* for all AGNs

• *R* differs for 4 orders of magnitude

Summary

- Seyferts will be a dominant population in the neutrino sky
 AGN corona would be a high-energy particle production
 - AGN corona wo site
 - ALMA/X-ray + IceCube observations would be important
- Are AGN corona in low-plasma beta? or high-plasma beta?

AGN Failed Wind? (S. Inoue+'22) Interaction between Accretion Flows and Disk Winds

S. Inoue +'22

neutrino data.

On the possible detection of NGC 4151 Corona model may be difficult to explain

- Gamma-ray detected by Fermi (4FGL-DR2; Perretti+'23)
- Corona + Weak Jet model can explain the Fermi data
 - But, the expected neutrino flux is an order of magnitude below the IceCube threshold
- A nearby blazar exists (~1 deg away from NGC 4151)...

Now we live in the ALMA era. • The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical interferometer of 66 radio telescopes in the Atacama Desert of northern Chile (from wikipedia). • Covers millimeter and submillimeter bands. • Has much higher sensitivity and higher resolution than before.

Investigation of non-thermal activities in Seyferts X-ray? GeV? MeV?

- MeV background by hybrid corona in Seyferts? (YI, Totani, & Ueda '08)
- FSRQs can also explain the MeV background (Ajello+'09, but see also Toda, YI, + '21)

