Beyond Standard Model Physics with IceCube

Anna Pollmann

> IceTop Array 81 stations

IceCube

IceCube Laboratory

Working principle

- Particles interact with the deep clear ice
- Emitted light is detected by sensors

South Pole -

IceTop Array 81 stations

IceCube

IceCube Laboratory

Working principle

- Particles interact with the deep clear ice
- Emitted light is detected by sensors

Particle types in IceCube

Atmospheric Muons (~10⁸ per day)

- cosmic HE particles interact with atmosphere (cosmic ray)
- a particle shower develops through the atmosphere (air shower)
- muons reach IceCube

Particle types in IceCube

Atmospheric Muons (~10⁸ per day)

- cosmic HE particles interact with atmosphere (cosmic ray)
- a particle shower develops through the atmosphere (air shower)
- muons reach IceCube

Atmospheric Neutrinos (~200 per day)

- cosmic ray induces air shower
- neutrino is created in shower
- neutrino interacts in Earth or ice
- visible muon or shower in IceCube
- energy threshold ~10 GeV

Particle types in IceCube

Atmospheric Muons (~10⁸ per day)

- cosmic HE particles interact with atmosphere (cosmic ray)
- a particle shower develops through the atmosphere (air shower)
- muons reach IceCube

Atmospheric Neutrinos (~200 per day)

- cosmic ray induces air shower
- neutrino is created in shower
- neutrino interacts in Earth or ice
- visible muon or shower in IceCube
- energy threshold ~10 GeV

Astrophysical Neutrinos (~10 per year)

- neutrino from outer space passes through Earth
- neutrino interacts in Earth or ice
- visible muon or shower in IceCube

- Introduction of IceCube
- Beyond Standard Model physics with IceCube
 - Direct detection of exotic particles
 - Standard detection channels
 - Development of new detection channels
 - Development of new detector modules

Beyond Standard Model physics with IceCube

Indirect detection

- exotic source of particles contributes to particle flux
- exotic interactions/particles contribute to propagation of particle fluxes
- unexpected particle properties at unprecedentedly high energies
- different fundamental laws of physics appear at long scales

Direct detection

- exotic particle (or interaction secondary) passes through the detector
- often distinct event signature expected

Relic Magnetic Monopoles

- elemental magnetic charge (Dirac) $g_D = e / 2 \alpha \approx 68.5 e$
- with huge mass created
 - shortly after the Big Bang (GUT) $10^{13} \text{ GeV} \leq M_{MM} \leq 10^{19} \text{ GeV}$
 - in intermediate stages of symmetry breaking (IMM) $10^7 \text{ GeV} \leq M_{MM} \leq 10^{13} \text{ GeV}$
- acceleration in magnetic fields for

 $M_{MM} \leq 10^{14} \text{ GeV to } E_{kin} \leq 10^{15} \text{ GeV}$

trapping around galaxy, sun, Earth v ~ 10⁻³ / 10⁻⁴ / 10⁻⁵ c

anna.pollmann@uni-wuppertal.de

Relativistic speeds

- Continuous light emission
 - Cherenkov Light
 - Cherenkov light from also valid for secondaries
- Stochastic losses •
 - Bremsstrahlung
 - Pair production -
 - Photonuclear interactions

Monopole light yield

Light production in water-Cherenkov telescopes

Slow speeds exotic scenarios

thermal shock waves (not used yet)

Light emission from proton decay

Monopole light yield

Velocity / c

Signatures of fast Magnetic Monopoles

Size \triangleq light amount

9

EPJ C76 (2016) 133 & EPJ C74 (2014) 2938

EPJ C76 (2016) 133 & EPJ C74 (2014) 2938

Light production by (exotic) particles in water and ice

Relativistic speeds

- continuous light emission
- stochastic losses

Intermediate speed

not covered yet

Slow particle speed (< 0.1 c)

- catalysis of proton decay
- thermal shock waves

Idea: Luminescence light

- ionising radiation passes through ٠ matter
- it excites atoms/molecules ٠
- relaxation with light emission •
- works for all speeds
- works for all ionising particles Light yield defines detectability!

Luminescence light emission pattern

Luminescence light measurement

Characterisation via

- light yield
- decay kinetics
- emission spectrum
- quenching

Dependencies

- temperature
- impurities / solubles
- radiation type
- pressure

Few existing measurements

with very different setups and results

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Luminescence light measurement

Characterisation via

- light yield
- decay kinetics
- emission spectrum
- quenching

Dependencies

- temperature
- impurities / solubles
- radiation type
- pressure

Laboratory measurements

- ultra-purified water degassed in vacuum (frozen to bubble free ice)
- induced luminescence light with α -particles from ²⁴¹Am
- measured single photons with photomultiplier
- probed background (temperature dependent)
- calibrated & calculated optics

Previous light yield measurements

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Comment:

- uncertainties of new laboratory measurement originates from water quality
- "Trofimenko" is the only <u>in-situ</u> measurement, all others use cleaned water

arxiv:1710.01197

Previous light yield measurements

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Comment:

- uncertainties of new laboratory measurement originates from water quality
- "Trofimenko" is the only <u>in-situ</u> measurement, all others use cleaned water

arxiv:1710.01197

4

SPICEcore borehole

- filled with anti-freeze / drilling grease (Estisol)
- measurements in 2018 / 2019

• measurements in 2018 / 2019

Luminescence Logger

Goal

 irradiate ice with β-source and measure back-scattered light

Method

- press source against ice
- guide scattered light onto photomultiplier

Details

- diameter: max 92 mm
- length: 1.30 m
- commercial mini USBoscilloscope for readout
- light detection with photomultiplier tube
- several sensors: i.e. temperature, gyro, IR camera

Luminescence Logger

Goal

 irradiate ice with β-source and measure back-scattered light

Method

- press source against ice
- guide scattered light onto photomultiplier

Details

- diameter: max 92 mm
- length: 1.30 m
- commercial mini USBoscilloscope for readout
- light detection with photomultiplier tube
- several sensors: i.e. temperature, gyro, IR camera

Luminescence Logger

Goal

 irradiate ice with β-source and measure back-scattered light

Method

- press source against ice
- guide scattered light onto photomultiplier

Details

- diameter: max 92 mm
- length: 1.30 m
- commercial mini USBoscilloscope for readout
- light detection with photomultiplier tube
- several sensors: i.e. temperature, gyro, IR camera

Results: Luminescence light measurement

Results: Luminescence light measurement

Decay times

2.44 ± 2.07 ns

196.1 ± 39.1 ns

5.03 ± 0.06 µs

 $56.1 \pm 6.29 \ \mu s$

Results: Luminescence light measurement

Decay times

2.44 ± 2.07 ns 196.1 ± 39.1 ns 5.03 ± 0.06 μs 56.1 ± 6.29 μs

Applications of ice luminescence

- searches for exotic particles incl. neutral particles
- calibration of ultra high energy neutrinos
- particle identification
- ice classification on icy moons in the solar system

Magnetic monopole exclusion limits

Q-ball

0.001 *c*,

Z=137

IceCube Upgrade (construction end 2022)

IceCube Gen2 (starting ~2025)

Towards more sensitive & larger particle detectors

mDOM: new detector module for the Upgrade (2022)

- 24 instead of 1 PMT
- better signal/noise ratio
- directional sensitivity
- 450 modules to be build in Berlin and Michigan

Mechanical integration

- low coverage of sensors
- safety at extreme environment

Current status:

- prototype reviewed
- test production of 10 modules

Towards more sensitive & larger particle detectors

WOM: new detector module for the Generation 2 (>2025)

- 1 prototype on its way to the ocean network canada (ONC)
- 15 modules for the Upgrade
 2022
- O(1000) modules for Generation
 2 >2025

Prototype for ONC Electronics based on logger

Towards more sensitive & larger particle detectors

WOM: new detector module for the Generation 2 (>2025)

- 1 prototype on its way to the ocean network canada (ONC)
- 15 modules for the Upgrade
 2022
- O(1000) modules
 for Generation 2
 >2025

Tasks (Sept. 2021)

- overall mechanical integration
- pressure vessel
- electronics development
- calibration (with others)
- production (with others)

- fractionally charged particles
- Q-balls (via standard methods and using luminescence)
- nuclearites (via thermal shocks, maybe experiments needed)
- ... and many more

Back to beyond standard model physics

- fractionally charged particles
- Q-balls (via standard methods and using luminescence)
- nuclearites (via thermal shocks, maybe experiments needed)
- ... and many more

Summary

- large neutrino detectors are sensitive to any ionising particles
- large detection volume facilitates unprecedented sensitivities to new physics
- many channels to probe new physics
- ➡ Lots to discover!

Backup

Dark Matter annihilation and decay

TeV WIMP increasingly disfavoured due to non observation at LHC/elsewhere

Search for annihilation / decay of DM in

- galactic DM (anisotropic)
- extra-galactic DM (isotropic, red shifted)

Annihilation

heavy Spin-0 particle annihilates into SM particles such as mono-energetic neutrinos

Decay

heavy DM decays into SM particles (directly or indirectly) with neutrinos in final state

Neutrino 2018 & arxiv:1804.03848 & 1705.08103

26

Beyond Standard Model physics with IceCube

Example

Indirect detection

- exotic source of particles contributes to particle flux
- exotic interactions/partices contribute to propagation of particle fluxes
- unexpected particle properties at unprecedentedly high energies
- different fundamental laws of physics appear at long scales

Neutrino crosssection

 atmospheric neutrinos pass different lengths of Earth
 ~ different amount of matter

Strategy

- atmospheric neutrinos from a wide range of baselines (~angles)
- energies: few GeV to 100 TeV

Event histogram

Phys. Rev. Lett. 120, 071801 (2018) 28

Strategy

- atmospheric neutrinos from a wide range of baselines (~angles)
- energies: few GeV to 100 TeV

Phys. Rev. Lett. 120, 071801 (2018) 28

Strategy

- atmospheric neutrinos from a wide range of baselines (~angles)
- energies: few GeV to 100 TeV

Phys. Rev. Lett. 120, 071801 (2018) 28

Strategy

- atmospheric neutrinos from a wide range of baselines (~angles)
- energies: few GeV to 100 TeV
- distinctive pattern in energy / angle / particle ID histograms

Recent result

- improved handling of systematics
- MC driven background handling
- consistent with previous IceCube / long baseline experiments within statistical uncertainties (shift due to statistical fluctuations)
- maximal mixing preferred

Phys. Rev. D 99, 032007 (2019) 29

Sterile neutrinos

Strategy

 for Δm²₄₁ ~ 1 eV² sterile neutrino states produce a change in the matter potential

0.0

-0.2

Phys. Rev. D95, 112002 (2017) 30

No sterile neutrino

Non-standard neutrino interactions

Strategy

 additional potential by nonstandard neutrino interactions changes oscillation pattern

Phys. Rev. D 97, 072009 (2018) 31

Lorentz Invariance Violation

Strategy

- atmospheric neutrino sample
- Standard Model extension describes different LIV effects as operators of different dimension
- these change the neutrino oscillation probability
- signal: anomalous muon neutrino disappearance
- using 30k > TeV scale muon neutrinos
- result: best limits on LIV for higher dimensions

anna.pollmann@uni-wuppertal.de

Sterile neutrinos at high energies

Strategy

• for $\Delta m_{41}^2 \sim 1 \text{ eV}^2$ sterile neutrino states try to identify the resonant oscillation from v_{μ} into v_s

Sensitivity for Fractional Charges

anna.pollmann@uni-wuppertal.de