

大阪大学 OSAKA UNIVERSITY

Search for new physics via rare K_L decays

Nobuhiro Shimizu for the KOTO collaboration

Seminar at Chiba university August 31st, 2020

Outline

- Introduction
 - $K_L \to \pi^0 \nu \bar{\nu}$
- CsI calorimeter upgrade to reduce neutron background
- Charged kaon background

\Box Search for $K_L ightarrow \pi^0 \gamma$ decay

KOTO experiment

Introduction

• Search for New Physics via measurement of $K_L \rightarrow \pi^0 \nu \bar{\nu} \, \text{decay}$

Very rare and theoretically clean decay: $\mathcal{B}_{SM}(K_L \to \pi^0 \nu \bar{\nu}) = (3.0 \pm 0.3) \times 10^{-11}$ JHEP **11** 033 (2015)

• KOTO experiment

Experimental principle

Csl calorimeter upgrade

Neutron background

To achieve SM sensitivity, we need to suppress neutrons by a factor of ten

Measure the depth with the time difference $\Delta T \equiv T_{MPPC} - T_{PMT}$ \rightarrow Small ΔT implies γ

Bias circuit

MPPC readout # of MPPCs: 4080 (>#PMT=#Csl)

To reduce # of channels.. <u>4 MPPCs</u> are connected

Bias connection

"Hybrid" bias connection

- adopted by MEG II upgrade
- AC line: series, to read out signals
- DC line: parallel, to apply bias voltage

Segmentation of readout

4080 MPPCs

Integrate 4 MPPCs at bias (hybrid)

1020 Sum 4 hybrids at amplifier

256 channels

MPPC installation (2018 autumn)

MPPC installation (2018 autumn) 12

Glue MPPCs on two rows in a day Spent 45 days to finish all Installation finished as scheduled

ΔT distribution of the <u>control samples</u> ¹³

✓ Use the larger ΔT out of two clusters (max ΔT) ✓ $K_L \rightarrow 3\pi^0$ MC well reproduces the distribution of data

Retaining 90% of γ from $K_L \rightarrow \pi^0 \nu \overline{\nu}$ decay, neutron contribution can be suppressed down to 1/60 !

Analysis of 2016-2018 data and charged kaon background

Post-unblind studies of 2016-2018 analysis¹⁵

Expected # of BGs in the signal region

	source		#BG (90% C.L.)	#BG (68% C.L.)
J	KL	$K_L \rightarrow 2\pi^0$	<0.09	<0.05
		$K_L \to \pi^+\pi^-\pi^0$	<0.02	<0.01
J		$K_L \rightarrow 3\pi^0$ (overlapped pulse)	0.01±0.01	0.01±0.01
		Ke3 (overlapped pulse)	<0.09	<0.05
		$K_L \rightarrow 2\gamma$	0.001±0.001	0.001 ± 0.001
		Ke3 (π^0 production)	<0.04	<0.02
		Ke3 (π ⁺ beta decay)	<0.01	<0.01
I		radiative Ke3	<0.046	<0.023
		Ke4	<0.04	<0.02
		$K_L \rightarrow e e \gamma$	<0.09	<0.05
		$K_L \rightarrow \pi^+ \pi^-$	<0.03	<0.02
,		$K_L \rightarrow 2\gamma$ (core-like)	<0.11	<0.06
		$K_L \rightarrow 2\gamma$ (halo-K)	<0.19	<0.10

source		#BG (90% C.L.)	#BG (68% C.L.)
K+/-	$K^\pm \to \pi^0 \pi^\pm$	0.03±0.03	0.03±0.03
	$K^\pm \to \pi^0 e^\pm \nu$	0.30±0.09	0.30±0.09
	$K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu$	<0.07	<0.04
Neutron	Upstream π^0	0.001 ± 0.001	0.001 ± 0.001
	Hadron cluster	0.02 ± 0.00	0.02 ± 0.00
	CV-pi0	<0.10	<0.05
	CV-eta	0.03 ± 0.01	0.03 ± 0.01
Total	central value	0.39 ± 0.10	0.39 ± 0.10

U: Updated from Kaon2019 N: New

□ Adopted blind analysis technique and opened the blind region (2019).

• SES =
$$\frac{1}{N_{K_L}\epsilon_{sig}}$$
 = 7.1 × 10⁻¹⁰ or 0.04 SM events expected.

We found four candidate events in the signal region and carefully checked our analysis.

• New concern: K^+ background was not negligible, but **uncertain remained**.

- $\square K_L \text{ interacts with the inner wall of collimator and produces } K^{\pm}$
- Geant3-based beamline simulation predicts $K^{\pm}/K_L \sim 1.6 \times 10^{-6}$ at the entrance of the decay volume
- $\square K^{\pm} \rightarrow \pi^0 e^{\pm} \nu \text{ (BR=5\%) can generate}$ a π^0 with large P_t

- # of BG from K^{\pm} decays
- = $(0.33 \pm 0.09) \times$ <u>uncertainty of simulation</u>

Data collection to measure K^{\pm} flux

17

2020 May-June run

- → Measure K^{\pm} flux with $K^{\pm} \rightarrow \pi^{+}\pi^{0}$ decay
 - ✓ Develop a new trigger scheme
 - ✓ Install a prototype charged veto counter in the upstream (UCV)
 - ✓ Study selection criteria to purify $K^{\pm} \rightarrow \pi^{+}\pi^{0}$ events

We have successfully collected the data

Measurement of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ decay

 \square Measure $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ decay (BR=20%)

□ Trigger three cluster events in the calorimeter

□ Reconstruction

• For two neutral hits, impose $M_{\gamma\gamma} = M_{\pi^0}$ • define K^{\pm} decay vertex

- For a charged hit, from the hit position and assumption of Pt balance of π^{\pm} and π^{0}
 - \rightarrow calculate the magnitude of the momentum
 - ightarrow reconstruct four vectors of all the particles

Calculate
$$M_{\pi\pi^0}$$

Event selection of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ decay 19

Selection criteria

- determined by the MC study
- Sufficiently large acceptance $\epsilon \sim 4 \times 10^{-4}$

D Purity of $K^+ \rightarrow \pi^+ \pi^0$ events >> 90% by MC study

Backgrounds $\bigstar K_L \rightarrow \pi^+ \pi^- \pi^0$ (BR=13%) populates in low $M_{\pi\pi^0}$ region

- The distribution of selected events are well reproduced by MC simulation of K^{\pm} decays.
- **D** K^{\pm} flux ratio:

$$\mathcal{R}_{K^{\pm}} = F_{K^{\pm}}/F_{K_{L}}$$

Comparison between simulation $\rightarrow \mathcal{R}_{K^{\pm}}^{meas.} / \mathcal{R}_{K^{\pm}}^{MC} = 3.0 \pm 0.1$

Measured K^{\pm} flux is 3 times larger than MC.

2016-2018 analysis BG table (updated, preliminary)

source		#BG (90% C.L.)	#BG (68% C.L.)
KL	$K_L \rightarrow 2\pi^0$	<0.09	<0.05
	$K_L \rightarrow \pi^+ \pi^- \pi^0$	<0.02	<0.01
	$K_L \rightarrow 3\pi^0$ (overlapped pulse)	0.01±0.01	0.01±0.01
	Ke3 (overlapped pulse)	<0.09	<0.05
	$K_L \rightarrow 2\gamma$	0.001±0.001	0.001 ± 0.001
	Ke3 (π^0 production)	<0.04	<0.02
	Ke3 (π^+ beta decay)	<0.01	<0.01
	radiative Ke3	<0.046	<0.023
	Ke4	<0.04	<0.02
	$K_L \rightarrow e e \gamma$	<0.09	<0.05
	$K_L \rightarrow \pi^+ \pi^-$	<0.03	<0.02
	$K_L \rightarrow 2\gamma$ (core-like)	<0.11	<0.06
	$K_L \rightarrow 2\gamma$ (halo-K)	<0.19	<0.10

		Preli	minary	
source		#BG (90% C.L.)	#BG (68% C.L.)	
K+/-	$K^\pm \to \pi^0 \pi^\pm$	0.09±0.09	0.09±0.09	New
	$K^{\pm} \to \pi^0 e^{\pm} \nu$	0.90±0.27	0.90±0.27	New
	$K^{\pm} \to \pi^0 \mu^{\pm} \nu$	<0.21	<0.12	
Neutron	Upstream π^0	0.001 ± 0.001	0.001 ± 0.001	
	Hadron cluster	0.02 ± 0.00	0.02 ± 0.00	
	CV-pi0	<0.10	<0.05	
	CV-eta	0.03 ± 0.01	0.03 ± 0.01	
Total	central value	1.05 ± 0.28	1.05 ± 0.28	New

from K^{\pm} decays

= (0.33±0.08)

× <u>uncertainties of simulation</u>

Prediction by MC simulation Uncertainty of flux \rightarrow x 3.0

- **D** BG table was updated based on the result of the K^{\pm} flux.
- \square Preliminary total BG estimation $\rightarrow 1.1 \pm 0.3$

\rightarrow The BG level is not negligible

2016-2018 analysis BG table (updated, preliminary)

						Preli	minary	
source		#BG (90% C.L.)	#BG (68% C.L.)	source		#BG (90% C.L.)	#BG (68% C.L.)	
KL	$K_L \rightarrow 2\pi^0$	<0.09	<0.05	K+/-	$K^{\pm} \to \pi^0 \pi^{\pm}$	0.09±0.09	0.09±0.09	New
	$K_L \rightarrow \pi^+ \pi^- \pi^0$	<0.02	<0.01		$K^\pm \to \pi^0 e^\pm \nu$	0.90±0.27	0.90±0.27	New
	$K_L \rightarrow 3\pi^0$	0.01±0.01	0.01 ± 0.01		$K^{\pm} \to \pi^0 \mu^{\pm} \nu$	<0.21	<0.12	
	(overlapped pulse)			Neutron	Upstream π^0	0.001 ± 0.001	0.001 ± 0.001	
	Ke3 (overlapped pulse)	<0.09	<0.05		Hadron cluster	0.02 ± 0.00	0.02 ± 0.00	
	$K_{-} \rightarrow 2\nu$	0 001+0 001	0 001 + 0 001		CV-pi0	<0.10	<0.05	

After wrapping up our post-unblinded study, we plan to submit a paper in this autumn.

 \square BG table was updated based on the result of the K^{\pm} flux.

 \square Preliminary total BG estimation $\rightarrow 1.1 \pm 0.3$

\rightarrow The BG level is not negligible

ion

Search for $K_L \rightarrow \pi^0 \gamma$ decay

$K_L \rightarrow \pi^0 \gamma$ decay?

No measurements so far

✓ $s \rightarrow d\gamma$ transition, forbidden by FCNC

$$\pi \leftarrow K_L \longrightarrow \gamma$$
 spin

Violates an angular conservation

- the spin of γ must be "compensated" by an orbital angular momentum, but back-to-back configuration cannot produce L_z
- IF v > "speed of light", it's allowed. (see PRD **59** 116008)

Oppositely to say, good test of the Lorentz invariance in the realm of short distances

Reconstruction of $K_L \rightarrow \pi^0 \gamma$

- 1. Find events which have exactly 3 clusters
- 2. Reconstruct a π^0 : $m_{\pi^0}^2 = 2E_1E_2(1 \cos\theta_{\gamma\gamma}) \rightarrow z_{vtx}^{\pi^0}$
- 3. Reconstruct a K_L : $m_{K_L}^2 = (p_{\gamma_1} + p_{\gamma_2} + p_{\gamma_3})^2 \rightarrow z_{vtx}^{K_L}$

Two types of vertex position, which should be close.

4. Define $\Delta z_{vtx} = z_{vtx}^{\pi^0} - z_{vtx}^{K_L}$ to suppress various BGs

Event selection of $K_L \rightarrow \pi^0 \gamma$

Analyzed data collected between 2016-2018 runs

The dominant background: $K_L \rightarrow 2\pi^0$ Δz_{vtx} and E_{min}^{γ} cuts suppress the contribution

The signal region (SR) is defined in $(z_{vtx}^{\pi^0}, M_{\pi^0\gamma})$ plane and masked the signal region before opening the box.

Open signal box

Single event sensitivity of signal: $\frac{1}{N_{K_L}\epsilon(K_L \to \pi^0 \gamma)} = (7.1 \pm 0.3_{\text{stat}} \pm 1.6_{\text{syst}}) \times 10^{-8}$

Open signal box

 $\mathcal{B}(K_L \to \pi^0 \gamma) < 1.7 \times 10^{-7}$ at 90% C.L. Paper is now under the referee process

Summary

□ KOTO searches for New Physics via very rare ($BR = 3 \times 10^{-11}$) decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$

To reduce neutron background, we attached >4000 MPPCs on the front surface of CsI crystal and succeeded to reduce the background by 60.

By opening the signal region of 2016-2018 data, we found 4 candidate events.

- After the post-unblind study, we found charged kaon incident had non-negligible contribution.
- Using 2020 data, we measured K⁺ flux to be 3 times larger than simulation

□ Forbidden decay $K_L → π^0 γ$ was searched for using 2016-2018 data. We found no candidate events in the signal region and set the first upper limit $BR < 1.7 × 10^{-7}$ at 90% C.L

That's all

Thank you!

To veto K^{\pm} (upstream charged veto, UCV)

A new detector installed before 2020 May-June run

- D Purpose
 - To confirm the existence of K^{\pm}
 - To veto K^{\pm}
- Basic design
 - 1-mm-thick plastic scintillation plate (composed of 1mm plastic scintillation fibers)
 - Use 6mm MPPCs (Si-photo sensor) to detect scintillation photons

Veto functionality of the prototype UCV³³

The selected events have on-time and MIP like energy deposit in UCV.

30% inefficiency exists but can be explained by
 1 limited coverage of K⁺ halo
 2 limited sensitive region of scintillation fiber
 3 noise fluctuation

Distribution in the signal region

K^{\pm} production at UCV

w/UCV

 $\mathcal{R}_{K^{\pm}} = F_{K^{\pm}}/F_{K_L}$ was measured with and without inserting UCV in beam.

To confirm whether UCV produces K[±].

$$\mathcal{R}_{K^+}^{Meas.} / \mathcal{R}_{K^+}^{MC} = 3.0 \pm 0.1 \text{ w/UCV}$$

= 3.0 ± 0.3 w/o UCV

- ✓ We did not observe $R_{K^{\pm}}$ difference between w/UCV and w/o UCV.
- → Level of UCV-induced K^{\pm} was not significant compared to beamline originated K^{\pm} .

- K_L interacts inner wall of the 2nd collimator and produces K^{\pm}
- Currently, the dominant contribution comes from K^{\pm} decays

We need to block the incident of K^{\pm} in front of KOTO detector

Summary of inefficiency

Source	Estimated inef. of prototype (%)	Possible goal with fiber option (%)	Possible goal with plate option (%)
Limited coverage	8	0	0
Gap and insensitive region	7	0.3	0
Noise and photo-statistics	11	(3.5+2)%	>5%
Low light yield of black fiber	2	—	_
Inactive interaction	0.5%	0.5%	Not yet considered
Masking	Included in noise	Negligible	Need to consider
Total	28	6%	

For the estimation of each category, please see backup

Prototype upstream charged veto (UCV)

A new detector installed Dec. 2019.

Purpose

- To confirm the existence of K^+
- To veto K⁺
- Basic design
 - 1-mm-thick plastic scintillation plate (composed of 1mm plastic scintillation fibers)
 - Use 6mm MPPCs to detect scintillation photons
 - A unique front-end readout to accept high hit rates and the severe irradiation environment[†]

84 fibers = 7 fibers × 12 channels

Study of the tilting angle

Simulate interaction of the charged particles, generated based on Nomura-san's beamline simulation. The particles were required to enter NCC hole.

Configuration and hit definition 0.5-mm-thick fibers

Gap due to cladding is 4%. Plate is rotated around y axis by θ (0, 2, 5, ...,45 degrees). Hits defined by Edep > 40 KeV/cos θ

- (As is expected) the mean energy deposit increases as tilting angle increases.
- If plate is rotated by ~20 degrees, the inefficiency is reduced from 3.5% \rightarrow 0.3%

→ Design target is > 20 degrees

Mechanics (UCV design)

Core region is read by thin 0.5 mm fiber with high granularity. Halo region is read by thick 1 mm fiber with modest granularity.

In total, 24 (= 20 from core and 4 from halo) signals come out. In the future upgrade, we may separately read 24 channels, but in the next beam time, we will reduce them by a factor of **two** at summing amplifiers placed outside of the vacuum chamber. **The important key of this two module scheme is that we can adjust the tilting angle of core UCV (see next page)**

Mechanics (UCV entire view)

 θ is important parameter, which determines material budget, inefficiency and light yield. θ is not completely fixed yet and will be finally determined based the result of beam test.

CsI calorimeter of the KOTO detector

CsI crystal

undoped CsI (λ~300 nm)
 #crystal = 2716
 2240 small (25 × 25 mm²)
 476 large (50 × 50 mm²)

Performance tests (γ/n separation)

- Beam test at RCNP-Osaka cyclotron
 - γ/n beam from Li target
 - γ: continuous beamup to 392 MeV

n: 392 MeV

Distribution $\Delta t \equiv T_{MPPC} - T_{PMT}$

Retain 90% of γ while suppressing \boldsymbol{n} to 34%

Rejection of neutron BG

Halo-neutron BG

* Prog. Theor. Exp. Phys. (2017) 021C01

Result of 4 days run: $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) < 5.1 \times 10^{-8}$ (90% C.L.)^{*}

Background source	Number of events
$K_L ightarrow 2\pi^{0}$	0.047 ± 0.033
$K_L \rightarrow \pi^+ \pi^- \pi^0$	0.002 ± 0.002
$K_L \rightarrow 2\gamma$	0.030 ± 0.018
Pileup of accidental hits	0.014 ± 0.014
Other K_L background	0.010 ± 0.005
Halo neutrons hitting NCC	0.056 ± 0.056
Halo neutrons hitting the calorimeter	0.18 ± 0.15
Total	0.34 ± 0.16

The largest contribution from BG

 We need 3 more magnitudes of suppression two-dimensional shower envelope → 1/10 ✓ done
 Pulse shape likelihood → 1/10 ✓ done

measure shower development (in z) in the calorimeter $\rightarrow O(1/10)$

Quality assurance of MPPCs

Soldering

temperature test

I/V inspection LED test

Inspect all of MPPCs (#~4000) before installation → Start gluing on CsI in this summer

Fabrication of MPPCs

Setup

Neutron energy spectrum

LED attached with fiber is under this sheet

Effect of the irradiation on the timing 47 resolution

Future study

The timing resolution may be recovered by increasing the bias voltage. This degradation may come from the decrease of gain.

Linearity of the dark current as a ⁴⁸ function of dose

Beam current is simultaneously monitored and we can convert the absolute neutron flux based on the previous experiment.

X axis is converted to the accumulated neutron flux.

Systematic uncertainty of S.E.S

$$\mathcal{B}(K_L \to \pi^0 \gamma) = \frac{N^{obs(SR)}}{N_{2\pi^0}^{obs(CR2)}} \cdot \frac{\epsilon_{2\pi^0}^{CR2}}{\epsilon_{\pi^0 \gamma}^{SR}} \cdot \mathcal{B}(K_L \to 2\pi^0)$$

Source	σ_ϵ/ϵ (in %)	Comment caliminary
$\mathcal{B}(K_L\to 2\pi^0)$	0.6	From PDG
Geometry	1.5	Estimated by varying beam E (+1%) and position (x,y=1mm) for signal
Veto cuts	17	By comparing data and MC in CR2 with ΔZ_{vtx} cut
Online veto	6.4	From the detector bits in the minimum bias data
Kinematic cuts	12	100% error of $ 1-\epsilon_{Data}^{2\pi^0}/\epsilon_{MC}^{2\pi^0} $
Clustering	1.0	Compare five and six cluster events
CSD cuts	1.5	Use five cluster events
Reconstruction	0.3	By comparing $N_{rec~3\pi^0}^{obs~6cls}$ and $N_{rec~2\pi^0}^{obs~6cls}$
Trigger	1.8	Difference of CDT efficiency from unity
Statistics	4.4	Statistics of normalization
Total	22	

49

Syst. uncertainty due to e^{veto}

 $\epsilon^{veto} = \frac{N_{all}}{N_{all wo/ith veto}}$ is compared between data and MC: $R = \epsilon_{CR2}^{DT} / \epsilon_{CR2}^{MC}$

$$\frac{\sigma_{\epsilon^{veto}}}{\epsilon^{veto}} = \sqrt{\sum_{i:all \ detectors} (R_i - 1)^2 = 17\%}$$

Veto efficiency

Inefficiency of veto detector is well understood by MC.

0.9 0.8 0.7 Data 0.6 0.5 0.4 MC 0.3 0.2 0.1 CC04Scinti CC05Scinti CC04E391 CC06E391 CC06Scinti NOW BHCV CBAR 18CV FBAR OEV BHGC BPCV MBCV BHPV NCC CC03 CC04KTeV CC05E391 LCV CV CS/ Vata ID

Single Veto Efficiency (