# Ocean Bottom Detector: **Exploring the Mantle with geo-neutrinos**

# <u>Hiroko Watanabe</u>,

## **Research Center for Neutrino Science, Tohoku University**

November 1, 2024

## **ICEHAP Seminar**

Crust ~10 km (Oceanic) ~40 km (Continental)

Upper mantle

-410 km -13 GPa OI + Px + Gt

**Transition zone** 

410-660 km 13-24 GPa Wad/Ring + Gt

Lower mantle

660-2700 km 24-125 GPa Brg + Fper + Cpv

D" layer

2700-2900 km 125-140 GPa Ppv + Fper + Cpv

Outer core 2900-5100 km 140-330 GPa Liquid

Inner core 5100-6370 km 330-365 GPa Solid metal

1000 km





## **Hiroko Watanabe**

**Research Center for Neutrino Science Tohoku University** 

## My research:

- Measuring neutrinos by **KamLAND** \*
- \* "Neutrino Geoscience"
  - : interdisciplinary science field

# → Ocean Bottom Detector

# **Self-introduction!**







**KamLAND @Kamioka** 







- 1. Introduction
- 2. Experiments status
- 3. Exploring mantle
- 5. Summary



# 4. Ocean Bottom Detector



- **1. Introduction**
- 2. Experiments status
- 3. Exploring mantle
- 5. Summary

# Contents



# 4. Ocean Bottom Detector



# Earth

Outer core: 1.8 x10<sup>24</sup> kg Inner core: 9.7 x10<sup>22</sup> kg

Moon scale to inner core

- 6.0 x 10<sup>24</sup> kg • Mass
- 5,514 kg/m<sup>3</sup> • Mean density
- Mean radius 6,371 km
- Elements

Fe, O, Mg, Si : ~94 % + Ni, Ca, Al : ~99 %









# **Earth's Structure**

## **1 Crust : Solid**

**※** 40K, 232Th, 235U, 238U (~99.5% of the Earth's radiogenic heating power)

- Volume : 2 %, Mass :~0.5 %
  - Heat-producing elements : 40 %
- Changes of <u>seismic wave</u> and chemical composition decide boundary

## **2** Mantle : Solid

- Volume : 82 %, Mass : 68%





5100 km 2900 km 6400 km



**40 km** – Light elements? Amount?

# **Geo-neutrinos**





Th











# **Geo-neutrino Energy**



## **XENON**



## **KamLAND**



Liquid Scintillator a few MeV

Dual-phase TPC sub-keV

## Super-Kamiokande

# IceCube





# Earth's Heat Budget











- Releases of gravitational energy through accretion or metallic core separation
- \* Latent heat from the growth of inner core





## **Primordial Heat**

- Releases of gravitational energy through accretion or metallic core separation
- \* Latent heat from the growth of inner core



## **Q**: How much radiogenic heat contributes to Earth's heat?







# Why geo-neutirno?: Big questions

## What is in the mantle?

### Many seismically imaged structures and chemical heterogeneities in the mantle





## How much fuel is left to drive Plate Tectonics?





## Nature & amount of Earth's thermal power

- 1. abundance of heat producing elements (U, Th, K) in the Earth
- 2. clues to planet formation processes
- 4. is the mantle compositionally layered or have large structures?



3. amount of radiogenic power to drive mantle convection & plate tectonics



## Nature & amount of Earth's thermal power

- 1. abundance of heat producing elements (U, Th, K) in the Earth estimates of silicate Earth 9-36 TW
- 2. clues to planet formation processes constrains chondritic Earth models
- 3. amount of radiogenic power to drive mantle convection & plate tectonics estimates of mantle 3.2-32 TW
- 4. is the mantle compositionally layered or have large structures? *layers, LLSVP\*, super-plume piles* \*Large-Low-Shear-Velocity Provinces



## Geo-neutrino can <u>directly</u> define power to drive the Earth's engine









# 1. Introduction

- 2. Experiments status
- 3. Exploring mantle
- 5. Summary



# 4. Ocean Bottom Detector





Two experiments have published geoneutrino measurement results.

Experiments





# KamLAND & Borexino

## Two liquid scintillator (LS) experiments have measured geoneutrinos.

## KamLAND (Japan, 2002~)





# \*LS : 1000 t \*Depth : 2700 m.w.e. \*expected event ratio reactor/geo ~6.7 (up to 2010) ~0.4 (2011~) w/o Japanese reactors

## Borexino (Italy, 2007~2020)





# \*LS: 278 t \*Depth: 3800 m.w.e. \*expected event ratio reactor/geo ~0.3 (2007~)







Livetime : 5227 days

(low-reactor phase : 2590 days)

**Massive dataset of low-reactor period**  $\rightarrow$  precise measurement of U and Th contributions

# **KamLAND Latest Results**



S. Abe et al, "Abundances of uranium and thorium elements in Earth estimated by geoneutrino spectroscopy", GRL, 49, e2022GL099566 Period 3 : KamLAND data : Reactor  $\overline{v}_{e}$ reactor neutrino : Reactor  $\overline{v}_{e}$  + other BG year : All BG + geo  $\overline{v}_{e}$ Events / 10keV low-reactor period geo-neutrino 3 5 6 E<sub>p</sub> [MeV] Best-fit <sup>232</sup>Th geo  $\overline{\nu}_e$ (g) 75 Best-fit <sup>238</sup>U geo  $\overline{\nu}_e$ vents/0.2MeV Data - BG - best-fit reactor  $\overline{\nu}_e$ 50

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Prompt Energy (MeV)

25

ĹЦ



S. Abe et al, "Abundances of uranium and thorium elements in Earth estimated by geoneutrino spectroscopy", GRL, 49, e202  $\frac{100}{100}$   $\frac{100$ 



# KamLAND Latest Results



**Madiogenic Heat** 

Adding heat estimate from crust, <sup>238</sup>U : **3.4** TW, <sup>232</sup>Th : **3.6** TW

 $Q^{\rm U} = 3.3^{+3.2}_{-0.8} ~{\rm TW}$  $Q^{\rm Th} = 12.1^{+8.3}_{-8.6} \,\,{\rm TW}$  $Q^{\rm U} + Q^{\rm Th} = 15.4^{+8.3}_{-7.9} \,\,{\rm TW}$ 

## **Model Rejection**

HighQ model is rejected at 99.76 % C.L. (homogeneous mantle) 97.9% C.L. (concentrated at CMB)

### Improve the distinct spectroscopic contributions of U and Th













# Borexino



(Mantle, U+Th) 24.6 +11.1/-10.4 TW High Q (30TW radiogenic hear) model is preferred.



# **Lithosphere Model**



Insights from geoneutrino experiments strongly depend on crustal models, especially near Lithosphere models, around the detectors.



 $\rightarrow$  Low NFL  $\rightarrow$  High mantle





\* Scintillator was filled [PPO 0.6g/L(April-July 2021), 2.2g/L (April 2022-March 2023)]

- \* Te will be added in 2024 for  $0v\beta\beta$  measurement.
- \* Geo-neutrino measurement was started, and will continue after Te addition
- \* Local geology around SNO+ site is well studies. Very old crust area.

# SNO+

## Information from I. Semenec and M. Chen

First measurement in North America











# JUNO

## Expected spectrum



## Challenges

## **Motivations**

\* Reactor neutrino background

- \* Distinguish U/Th signals, obtain ratio \* Refined local crustal model
- \* Extract mantle component
- \* 2024~ data taking

>Sensitivity: ~22% (1 year), ~8% (10 years)



## **Expected event** 38.7 TNU (408 events/year)

| ackgrounds                           | Event rate/year |
|--------------------------------------|-----------------|
| reactor                              | 16100           |
| <sup>9</sup> Li- <sup>8</sup> He     | 20              |
| ast neutrons                         | 100             |
| <sup>13</sup> C(a,n) <sup>16</sup> O | 50              |
| cidental events                      | 401             |

Han, Li, et, al. CPC 2016





## Large statistics





- 1. Introduction
- 2. Experiments status
- 3. Exploring mantle
- 5. Summary

# Contents



# 4. Ocean Bottom Detector

# Neutrino Geoscience: Current and Future



## first measurement in 2005

![](_page_25_Figure_3.jpeg)

# Multi-site Measurement + OBD

**Observation** = 
$$Crust$$
 + Mantle  
(y = x + b)

### **Near Future...**

## 3 multi-site measurements can constrain mantle contribution.

Crust estimation needs to be accurate.

### + OBD

## **OBD** can directly measure mantle contribution.

![](_page_26_Picture_7.jpeg)

![](_page_26_Figure_8.jpeg)

# **OBD** Motivations

Direct Measurement of Mantle

need to be far from crust can be far from reactors

### **Multi-site Measurements**

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

### **Multidisciplinary Detector**

![](_page_27_Figure_6.jpeg)

![](_page_27_Picture_7.jpeg)

### Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u> **Mantle/Total**

![](_page_27_Figure_9.jpeg)

![](_page_27_Figure_10.jpeg)

# **OBD** Motivations

### **Direct Measurement of Mantle**

need to be far from crust can be far from reactors

## • Multi-site Measurements

**Solve the mystery of deep Earth!** First detector for mapping the inhomogeneous mantle

### **Multidisciplinary Detector**

![](_page_28_Figure_7.jpeg)

### Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u>

### Mantle Geoneutrino Flux

![](_page_28_Picture_12.jpeg)

![](_page_28_Picture_13.jpeg)

![](_page_28_Picture_14.jpeg)

# **OBD** Motivations

### **Direct Measurement of Mantle**

need to be far from crust can be far from reactors

### **Multi-site Measurements**

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

## Multidisciplinary Detector

Physics, Geoscience, Mantle drilling, Biology, New technology,...

![](_page_29_Picture_7.jpeg)

![](_page_29_Figure_8.jpeg)

![](_page_29_Picture_9.jpeg)

![](_page_30_Picture_0.jpeg)

- 1. Introduction
- 2. Experiments status
- 3. Exploring mantle
- 5. Summary

# Contents

![](_page_30_Picture_7.jpeg)

# 4. Ocean Bottom Detector

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_4.jpeg)

![](_page_31_Picture_6.jpeg)

![](_page_31_Picture_9.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_12.jpeg)

![](_page_33_Figure_1.jpeg)

## **Technical demonstration & environment measurement in the sea**

deep sea neutrino & muon flux, ocean water density & temperature, radioactivity  $\rightarrow$  input parameters for ~1.5 kt detector design

## **First clear mantle signal**

- Detector simulation study is in progress.
- Hawaii is possible position.
- Detector should be installed at ~4km deep sea to Low temperature (2-4°C) shield muons

![](_page_33_Figure_8.jpeg)

![](_page_33_Figure_9.jpeg)

(mantle)

### [Events/year]

2019 Ne are 2020-2024

~20 kg

2.5

Counts /0.1MeV/year

- \* Mantle geoneutrino sensitivity lowQ model:
- highQ model: 1year  $\rightarrow$  3.7 $\sigma$ middleQ model:  $3year \rightarrow 3.5\sigma$

U

Th

- $10 \text{year} \rightarrow 2.5 \sigma$

![](_page_33_Figure_17.jpeg)

![](_page_34_Picture_1.jpeg)

## **Community Building Status**

### **Thematic Program 2022**

![](_page_34_Picture_4.jpeg)

## Earth's Interior and Dynamics

August - December 2022

2019 Ne are 2020-2024

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_10.jpeg)

### Organizers

rsityl Kunis Insue Its sityl William F. McDaneugh Trohoku University / University of Mar

![](_page_34_Picture_18.jpeg)

TOHOKU FORUM FOR CREATIVITY

www.tfc.tohoku.ac.jp

| 105 | 深海アルゴフロートの全球展開による気候・生態系変<br>動予測の高精度化 | 神田 穣太(日本海洋<br>長)            |
|-----|--------------------------------------|-----------------------------|
| 106 | 地球ニュートリノ観測が切り拓く新しい地球未来像              | 渡辺 寛子 (東北大学・<br>トリノ科学研究センター |
| 107 | 衛星全球地球観測による気候・地球システム科学研究<br>の推進      | 若林 裕之(日本リモー<br>シング学会会長)     |

![](_page_34_Picture_23.jpeg)

![](_page_34_Picture_26.jpeg)

# **Status of Technical Developments**

![](_page_35_Picture_1.jpeg)

## **Needs: low background** pressure resistant

### IceCube type PMT module is expected

![](_page_35_Picture_4.jpeg)

## Acrylic

- low background
- pressure resistant : <40MPa broken

![](_page_35_Picture_8.jpeg)

Pressure test @JAMSTEC

can not be used?

structural calculation

## Glass (OKAMOTO Glass Co.)

- pressure resistant
- very high impurities

|              |                      |                       | [g/g]                |
|--------------|----------------------|-----------------------|----------------------|
|              | 238 <b>U</b>         | <sup>232</sup> Th     | <sup>40</sup> K      |
| target       | 1x10 <sup>-8</sup>   | 1x10 <sup>-8</sup>    | 1x10 <sup>-8</sup>   |
| normal glass | ~1x10 <sup>-7</sup>  | ~1x10 <sup>-7</sup>   | ~1x10 <sup>-7</sup>  |
| our work     | 1.4x10 <sup>-8</sup> | <5.0x10 <sup>-9</sup> | 3.4x10 <sup>-9</sup> |
| reduction    | 1/10                 | 1/500                 | 1/300                |

\* cleaner material selection

\* Pt coating on the melting pot

![](_page_35_Picture_19.jpeg)

enhance the size (20 inch)

![](_page_35_Picture_21.jpeg)

![](_page_35_Picture_22.jpeg)

## Liquid scintillator LAB(oil) + PPO(fluorescents)

![](_page_35_Figure_24.jpeg)

350

300

400

450

500

WaveLength [nm]

550

# **Status of Technical Developments**

Liquid scintillator density under low-temperature & high pressure

**Temperature & pressure dependence profiles are available.** 

![](_page_36_Figure_3.jpeg)

![](_page_36_Picture_8.jpeg)

pressure

# **Status of Technical Developments**

## Prototype detector design & construction

![](_page_37_Figure_2.jpeg)

## flame

### Liquid Scintillator tank (V=30L)

![](_page_37_Picture_5.jpeg)

![](_page_37_Picture_6.jpeg)

### stainless box

![](_page_37_Picture_9.jpeg)

### ref) IceCube experiment

### **PMT & electronics**

![](_page_37_Picture_12.jpeg)

### shield folder

![](_page_37_Picture_14.jpeg)

## planning to deploy prototype detector into ocean in 2024

![](_page_37_Picture_16.jpeg)

# **Technical and Science Coevolution**

## 2024~

## ◆ <u>Prototype detector (20kg)</u> : our first experience deploying LS detector into the ocean

- @~1km, ~4°C, 10MPa
- \* Technical items
  - \* workable PMT module in the ocean
  - \* remote control system (monitoring, DAQ)
- \* Science targets: muon rate & radioactivities in the ocean  $\rightarrow$  input parameters for large size detector

### around 2034~ ◆Large size detector (1.5kt, 10-50kt) : first direct measurement of mantle geo-neutrino contribution

- @~4km, 2~4°C, 40MPa
- \* Technical items:
  - \* PMT modules with shield
    - \* for inner detector: >3000, in buffer oil region
    - \* for outer detector: >300, in sea water (e.g. KM3Net)
  - \* low-power electronics
  - \* data transfer system
- \* Science target:
  - \* mantle geo-neutrinos, high-energy neutrinos (OBD can use both water and LS as targets.)

![](_page_38_Figure_22.jpeg)

Stainless tank

![](_page_38_Figure_23.jpeg)

![](_page_38_Figure_24.jpeg)

![](_page_38_Picture_26.jpeg)

![](_page_38_Picture_27.jpeg)

• For two centuries we have asked *what is the energy that drives the Earth?* 

- Geoneutrinos are unique and new tool to measure directly the Earth's interior. Strong way to measure amount of radioactive elements in the Earth
- •To date, physics experiments have shown the usefulness of geoneutrinos.
- "Neutrino Geoscience" : <u>collaborations between geoscience, physics, ocean</u> engineering and beyond
  - Ocean Bottom Detector (OBD) = Breakthrough
  - OBD has strong power to measure mantle contribution directly

<Transformative insights>

**OBD's Primary Goal : • map the mantle** 

## Summary

![](_page_39_Picture_10.jpeg)

Interdisciplinary community has furthered its connection over these past 15 years.

constrain the planet's cooling history