Observations of hydrodynamical instabilities in interstellar space

Orion nebula (near infrared with ESO-VISTA)

Olivier Berné Post-doc, at IRAP (CNRS/Univ. Toulouse,)

and

J. Cernicharo / N. Marcelino (Centro de astrobiologia, CSIC/INTA, Madrid, Spain) C. Joblin (CNRS/Univ. Toulouse, France) A. G. G. M. Tielens (Leiden observatory)

- The infrared interstellar medium
- Evolution of carbonaceous nano-grains in the interstellar medium
- Using mid-IR emission of carbonaceous nanograins to probe astrophysical environments
- Discovery of Kelvin-Helmholtz instability in the interstellar medium
- If there is time: the story of the Football/Soccerball molecule in space
- Acknowledgements

My «career»

Research interests

- I am an observer
- Mostly infrared observations, especially spectroscopy in the infrared
- Galactic nebulae, starforming regions, protoplanetary disks
- Astrochemistry
- Signal processing (especially blind signal separation)

- Evolution of carbonaceous nano-grains in the interstellar medium
- Using mid-IR emission of carbonaceous nanograins to probe astrophysical environments
- Discovery of Kelvin-Helmholtz instability in the interstellar medium
- If there is time: the story of the Football/Soccerball molecule in space
- Acknowledgements

Lifecycle of low mass stars

M<8Msun

Lifecycle of low mass stars

M<8Msun

- The infrared interstellar medium

Evolution of carbonaceous nano-grains in the interstellar medium

- Using mid-IR emission of carbonaceous nanograins to probe astrophysical environments

- Discovery of Kelvin-Helmholtz instability in the interstellar medium
- If there is time: the story of the Football/Soccerball molecule in space
- Acknowledgements

Evidence for PAH evolution in the ISM

Each observed spectrum is a linear combination of elementary spectra
We observe different mixtures of the same elementary spectra

Mathematical model for evolution of PAHs

Linear instantaneous model

 $x_i(\lambda) = a_{i1} \times S_1(\lambda) + a_{i2} \times S_2(\lambda) + a_{i3} \times S_3(\lambda) \dots$

Goal identifying A and S, from X

Solving the problem using Non-negative matrix factorization (NMF)

The problem	Approach:
$X = A \times S$	$X \approx W \times H$

The criteria, Euclidian distance / Kullback's divergence :

$$||X - WH||^{2} = \sum_{ij} (X_{ij} - (WH)_{ij})^{2}$$
$$D(X|WH) = \sum_{ij} (X_{ij} \log \frac{X_{ij}}{(WH)_{ij}} - X_{ij} + (WH)_{ij})$$

The algorithm

$$H_{a\mu} \leftarrow H_{a\mu} \frac{\sum_{i} W_{ia} X_{i\mu} / (WH)_{i\mu}}{\sum_{k} W_{ka}}, W_{ia} \leftarrow W_{ia} \frac{\sum_{\mu} H_{a\mu} X_{i\mu} / (WH)_{i\mu}}{\sum_{\nu} H_{a\nu}}$$

- We set the numbers or rows of ${f H}$
- \mathbf{W} and \mathbf{H} must be positive
- We start iteration with random $oldsymbol{W}$ and $oldsymbol{H}$
- Results do not depend on initialization

[Lee and Seung, Nature, 2001]

Photochemical evolution of PAHs

[Rapacioli et al. Astron. Astrophys. 2005, Berné et al. Astron. Astrophys. 2007]

- The infrared interstellar medium
- Evolution of carbonaceous nano-grains in the interstellar medium

Using mid-IR emission of carbonaceous nanograins to probe astrophysical environments

- Discovery of Kelvin-Helmholtz instability in the interstellar medium
- If there is time: the story of the Football/Soccerball molecule in space
- Acknowledgements

Constructing a model

Model benchmarking in galactic nebulae

[Pilleri et al. A&A 2012 accepted]

Observations Model

Go: intensity of UV radiation field emitted by stars into the ISM

Model benchmarking in galactic nebulae

Observations Model

Go: intensity of UV radiation field emitted by stars into the ISM

Application to nearby galaxy M82

Application to remote galaxies (data from K. Dasyra)

Application to the «Gomez hamburger» protoplanetary disk

For the following:

Mid-IR PAH emission is a high angular resolution, optically thin tracer of of UV illuminated couds in star forming regions

- The infrared interstellar medium
- Evolution of carbonaceous nano-grains in the interstellar medium
- Using mid-IR emission of carbonaceous nanograins to probe astrophysical environments

Discovery of Kelvin-Helmholtz instability in the interstellar medium

- If there is time: the story of the Football/Soccerball molecule in space
- Acknowledgements

Background

- Since the seminal work of Lyman Spitzer 1954 (ApJ 120) it was proposed that hydrodynamic instabilities can happen in star-forming regions

- This is important because it will determine the structure of the ISM, induce turbulence, and chemical mixing of heavy elements injected by massive stars

Schematic morphology of star-forming region

The Rayleigh Taylor instability ?

Horsehead nebula

Pillars of creation

Studies with radio-telescopes show that velocity fields do not match models of RT instability [M. Pound ApJ 1998, ApJ 2003]

Study of Orion visible vs infrared

Study of Orion infrared vs millimeter

IRAM 30m radio-telescope, ¹²CO (2-1) spatial resolution of 11", spectral resolution of 2km.s⁻¹

Study of Orion visible vs infrared

The Orion «Ripples», geometry

The Orion «Ripples», kinematics

The Orion «Ripples», first level analysis

[Berné, Marcelino & Cernicharo, Nature 2012]

The observed structure is compatible with a KH instability for velocities and densities of the HII region

New images

Near IR images of Orion Ripples from European Southern Observatory in Chile

- The infrared interstellar medium
- Evolution of carbonaceous nano-grains in the interstellar medium
- Using mid-IR emission of carbonaceous nanograins to probe astrophysical environments
- Discovery of Kelvin-Helmholtz instability in the interstellar medium

If there is time: the story of the Football/Soccerball molecule in space

- Acknowledgements

Soccerball molecule in space Fullerenes (buckyballs) in space !

- Discovered in the lab in 1985 [Kroto et al. Nature 1985]

- Discovered in space through IR spectroscopy with Spitzer in 2010
- Present in evolved stars and in the ISM
- Formation process ?

NGC 7023 reflection nebula (interstellar medium)

Standard formation process (bottom-up)

- Aggregation of C atoms, through rings, chains...

- In the dense and hot and H poor envelopes of evolved stars: $n_H > 10^{11} \text{ cm}^{-3}$,T=1500K [Cherchneff et al. A&A 2000]

An unexpected discovery using Spitzer and Herse

- Graphene is a sheet of C atoms in hexagonal network, Graphene is an infinite PAH with no H
- Direct transformation of a graphene flake into C60 observed under electron irradiation

mation route in the ISM **Propose f**

 $\tau_{\rm chem}$ [yr]

200

Proposed formation route in the ISM

C atoms in a hexagon only C atoms in a pentagon

Acknowledgments

- University of Toulouse for financial support
- Prof. Matsumoto for financial support
- Yosuke Matsumoto for organizing this trip
- All the staff/students/postdocs here in Chiba for their kindness