Observation of the universe's highest energetic particles and a next-generation observatory

Toshihiro Fujii
(fujii@icrr.u-tokyo.ac.jp)
ICEHAP seminar
2017/July/28

This is how scientists see the world.

This is how scientists see the world.

This is how scientists see the world.

 credit: http://abstrusegoose.com

What are Cosmic Rays?

\& Energetic particles injected from the universe.
\& Discovered by V. F. Hess (1912)
$\%$ Proton(90\%), Helium (8\%) and heavier nuclei
\% $E>10^{19} \mathrm{eV}$, ultrahigh-energy cosmic rays (UHECR)

Aug. 7th, 1912

Grandson of Hess

Altitude [km]
Zur Rimmerumg an die Entacekung der kosmistien Stralifung
Am\%.Augus: 1972 handefeder dsteretichtsche Physiker Victor Eliess
 Fahit von Noribohmen, dieflhin ble aff 5800 un Hohe filitity, hat ce den Nrehwels gher durchdring enden:

Cosmic Ray Anniversary on Aug. 7th 2012

Physics goal of UHECR Astrophysics

TThe origin and nature of ultrahigh-energy cosmic rays (UHECRs) and particle interactions at the highest energies
$\$$ How frequent?
What kind of particle?
Where come from?

How frequent?: Energy spectrum

Acceleration Scenario toward $10^{20} \mathrm{eV}$

$E^{2.5} J(E)$

Supernova remnants

Equivalent c.m. energy $\sqrt{s}_{\mathrm{pp}}(\mathrm{GeV})$
10^{5}
$10^{5} \quad 10$
111

- HiRes-MIA
- HiRes I

Extragalactic origin?

\% Bottom-up model

\% Neutron stars, Active galactic nuclei, Gamma ray bursts, Radio galaxies, Galactic clusters
\& Top-down model
\% Annihilation/decay of super heavy relic particles, Topological defect, magnetic monopole, Z-burst model

Magnetic Field Strength

$$
E_{\max } \leq \gamma e Z B R
$$

Y: Lorentz factor of shock
Z : atomic number
B : magnetic field strength
R : size

SCIENCE VOL 33915 FEBRUARY 2013

Greisen-Zatsepin-Kuzmin (GZK) Cutoff

\% Interaction between UHE protons with energies above $\mathbf{1 0}^{19.75} \mathrm{eV}$ and CMBR via a pion production. Heaver nuclei also interact with CMBR via photo-disintegration.
\% Mean free path : $50-100 \mathrm{Mpc}$ (Nearby sources compared to the universe size)
E Expect suppression of flux above $10^{19.7} \mathrm{eV}$.

Planck 2013

Theoretic models of ankle structure

Dip model

\& Suppression = GZK cutoff
© Observed "ankle" = pair creation "dip"
Transition takes place well before the "ankle".

Ankle model

\& Suppression = acceleration limit
\& Ankle structure $=$ transition of origins
\% Not "dip"

UHECR Astronomy

Flux suppression \rightarrow Nearby Universe \rightarrow Large scale structure \& UHECR \rightarrow Small deflection in galactic/extragalactic magnetic field

$$
\delta \simeq 3^{\circ} \frac{B}{3 \mu G} \frac{L}{k p c} \frac{6 \times 10^{19} \mathrm{eV}}{E / Z}
$$

Correlation with Nearby sources

\downarrow
 UHECR

Astronomy

How to observe extensive air shower (EAS)

Mass composition measurement using $X \max$

With the same energy, \boldsymbol{E} Proton(1) Iron(56)

longitudinal developments for Proton and Iron primaries.

Fluorescence detector (FD)

\% Detecting fluorescence photons emitted from atmospheric molecule excited by EAS.
\& Measuring longitudinal development of EAS including $\boldsymbol{X} \mathbf{m a x}=$ sensitive to mass composition
\& Only moonless clear night, duty cycle, 10~15\%
\& less dependence on hadronic interaction model.
\& Many calibration factors: atmosphere, mirror reflectance, filter transparency, PMT gain.

History of fluorescence technique

－・カーブ淠定の提䒜
Fresnel lens＋PMTs

＊In 1958，proposal of fluorescence technique （Suga，Oda＠Norikura symposium）
\％Many photomultiplier tubes on the focal plane of Fresnel lens／mirror to observe fluorescence light．
© Observe longitudinal profile including Xmax to be sensitive to the mass composition of cosmic ray．
\％In 1969，first detection of fluorescence light by TOKYO－1 （Tanahashi et al．＠Doudaira Observatory，Japan）

First detection of EAS using fluorescence technique

Candidates observed by TOKYO－1（1969）

Re－analysis by B．Dawson et al．（2011）

\＆Long signal duration for event 12 ．
\％The event is consistent with the fluorescence－dominated shower with $5 \times 10^{18} \mathrm{eV}, 680$ $\mathrm{g} / \mathrm{cm}^{2}$（B．Dawson，arXiv： 1112．5686）．

8．In the upgrade detector of TOKYO－3，the $4 \mathrm{~m}^{2}$ lens was unfortunately UV protected one．
\＆Fly＇s Eye experiment， Telescope Array experiment and Pierre Auger Observatory established the fluorescence technique and

第6図 プラスチックレンズの光透過性能 （TOKYO－1，TOKYO－2，TOKYO－3）

M．Ave et al．I Astroparticle Physics 28 （2007）41－57
 reported physics results．

Surface detector array (SD)

\% Observing EAS particles on the ground by SD array
\% Measuring lateral density distributions
\& 24 hour, 365 days operation, Duty cycle ~100\%
\& A large systematic uncertainty due to hadron interaction models.

UHECR observatories

8 Telescope Array Experiment (TA)
© Utah, USA
(3 $700 \mathrm{~km}^{2}\left(\rightarrow 3,000 \mathrm{~km}^{2}\right)$
© ~ 7 events/year $(\rightarrow 30)$
8 Pierre Auger
Observatory (Auger)
© Malargue, Argentina
(3) $3,000 \mathrm{~km}^{2}$

Google Earth
8 ~ 30 events/year

Telescope Array Experiment (TA)

 Largest cosmic ray detector in the Northern hemisphere $\sim 700 \mathrm{~km}^{2}$ at Utah, USA\& Fluorescence detector + Surface detector array

Fluorescence detector at MD station Refurbished from HiRes experiment, Spherical mirror $5.2 \mathrm{~m}^{2}$, 256 PMTs/camera,
14 telescopes

Spherical segment mirror $\left(6.8 \mathrm{~m}^{2}\right)+256$ Photomultiplier tube(PMTs)/camera, 12 newly designed telescopes

Delta, Utah, USA

Cow

Pierre Auger Observatory (Auger)

The world's largest UHECR observatory $3000 \mathrm{~km}^{2}$
(2004 -) completed in 2008
(200
Surface Detector (SD) Water Cherenkov Tank 1.5 km spacing, 1600 stations

Fluorescence Detector (FD)

3.4 m spherical mirror, $440 \mathrm{PMT}, 30^{\circ} \times 30^{\circ} \mathrm{FOV}$ light guide + collector ring, 4×6 telescope

Malargüe, Mendoza,

Annual parade and AugerPrime 2015 ceremony

reverobiver

Scale of UHECR Observatory

Scale of UHECR Observatory

Scale of UHECR Observatory

An observed event

PIERRE AUGER OBSERVATORY

Los Leones

Los Morados
Calibrated by E_{FD}

Intermediate summary

\% Ultrahigh-energy cosmic rays (UHECRs) are most energetic particles in the universe.
\% This energy is much larger than human-made accelerator in ground. But very infrequent as 1 particle km^{-2} century ${ }^{-1}$. Very large coverage required to detect UHECRs.
\& GZK cutoff is expected above cosmic rays with energy of $10^{19.7} \mathrm{eV}$.
\% Small deflection of UHECR will provide us a next-generation astronomy.
\% Three important measurements: energy spectrum, mass composition, arrival direction
\& Measurements of extensive air shower induced by UHECR with the hybrid detector (SD and FD).
$\%$ The largest cosmic-ray observatories in operation: Telescope Array experiment ($700 \mathrm{~km}^{2}$, USA) Pierre Auger Observatory ($3000 \mathrm{~km}^{2}$, Argentina)

Quick question?

Pierre Auger Observatory

Mendoza, Argentina

Recent Results in ICRC2017

TA/Auger exposure comparison

PIERRE AUGGER

Auger energy spectrum

E / eV
10^{19}
10^{20}

TA energy spectrum

Spectrum discrepancy at highest energies

Entire skies of Auger and TA

Common declination band

$\$$ Rescaled to fit the ankle spectrum.
\% Spectrum discrepancy at the highest energies.
\& Good agreement if we select events in the common declination band,
\% Northern/southern hemisphere difference or detector systematics.

Declination dependence?

\% No declination dependence in Auger.
\& 3.9o difference of the fitted broken energies in TA.

Detector exchange to understand the discrepancy

Pioneering measurements by TASD and Auger water tank

Mass composition (Average $\boldsymbol{X} \max$)

Mass composition (Xmax distribution)

Summary from Xmax working group

TA Detector Simulation

Elongation rate

PIERRE
AUGER
\% Elongation rates indicate a transition of the mass composition.
\% Very similar elongation rate (slope) for all post-LHC models, $\sim 50 \mathrm{~g} / \mathrm{cm}^{2} /$ decade
\& minimum given by QGSJetII-04
\& maximum given by Sibyll 2.3c

T. Pierog in ICRC 2017

(FD)

Interpreting $X_{\text {max }}$ distributions with QGSJETII-04

Composition fractions
(obtained from fits to the $\mathrm{X}_{\text {max }}$ distributions)

Mass composition using Auger SD

The risetime is the time taken by the integrated signal of the surface detectors to rise from 10% to 50% of its total value

P. Sanchez-Lucas in ICRC 2017

N : number of detectors in an event

Average $\mathrm{Xmax}^{\mathrm{max}}$

\& Lighter composition above $10^{19.7} \mathrm{eV}$?

No GZK γ and v at highest energies

\& Top-down models are ruled out.
\% Auger limits become sensitive to GZK-v and γ

In tension of the dip model by IceCube limit

> Low statistics cannot distinguish source- or GZK effect
> Fit driven by ankle region

- Favours hard spectra
- ...and strong source evolution

> Overshoot: below fit range
- Minimal escape energy?
- Magnetic field diffusion?
- Or further constraint on Dip model?

M. Mallamaci, P. Sanchez-Lucas, M. Unger, Y. Zhezher in ICRC 2017 No perfect models at the highest energies... 51

Anisotropy: hot/warm spots

All Sky Survey with TA\&PAO

Oversampling with 20°-radius circle

No correction for E scale difference b/w TA and PAO !!

Northern TA: 7 years 109 events (>57EeV) Southern Auger : 10 years 157 events ($>57 \mathrm{EeV}$) Southern hotspot is seen at Cen A(Pre-trial $\sim 3.6 \sigma$)

Nearby Galaxy Clusters

Ursa Major Cluster
($\mathrm{D}=20 \mathrm{Mpc}$)
Perseus-Pisces

Dots : 2MASS catalog Heliocentric velocity <3000 Kuchra, et al, ApJ, (2012
TA hotspot is found near the Ursa Major Cluster

Lack of UHECRs from Virgo cluster.

TA hotspot update

With original 20° oversampling, spot looks larger.... Thus, scan over $15^{\circ}, 20^{\circ}, 25^{\circ}, 30^{\circ}$, With 25° oversampling, significance maximum 3σ \& 35°

Binsize	$\mathbf{1 5}$		$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$				
	Local	Global								
Year 5	5.12	3.14	5.43	3.55	5.16	3.19	4.82	2.73	4.33	2.05
Year 7	4.92	2.84	5.37	3.44	5.65	3.80	5.37	3.44	5.03	2.99
Year 9	4.42	2.06	4.72	2.50	5.06	2.96	5.01	2.91	4.66	2.41

2 doublets above 100 EeV

Small-scale anisotropy

2 doublets above 100 EeV .
\rightarrow the probability to have ≥ 2 doublets at $\leq \sqrt{2}$ deg is

$$
P=0.30 \%(2.8 \sigma)
$$

Search for lntermedlete-scele UగECR Anisotroples

Active Galactic Nuclei

- 2FHL AGNs
- flux proxy: $\Phi(>50 \mathrm{GeV})$
- 17 objects within 250 Mpc

Star-forming of Starburst Galaxies

- Fermi-LAT search list (Ackermann+2016) 2012
- $\Phi\left(>\frac{1}{1.54}, \mathrm{GHz}\right)>0.3 \mathrm{Jy} 1.4 \mathrm{GHz}$
- flux proxy: $\Phi(>1.54, \mathrm{GHz})$
- 23 objects within 250 Mpc

Likelihood ratio analysis

- smearing angle ψ

Active galactic nuclei - $\mathrm{E}>60 \mathrm{EeV}$

- H_{0} : isotropy
- $H_{1}:(1-f) \times$ isotropy $+f \times$ fluxMap (ψ) - $\mathrm{TS}=2 \log \left(H_{1} / H_{0}\right)$

Search for lntermedlete-scele UnIcci Anisotroples

$f=10 \%, \psi=13^{\circ}$
pre-trial* p-value: 4×10^{-6}
post-trial** p-value: 4×10^{-5}
post-trial** ${ }^{* i g n i f i c a n c e: ~} 3.9 \sigma$
$f=7 \%, \psi=7^{\circ}$
pre-trial* p -value: 5×10^{-4}
post-trial** \mathbf{p}-value: 3×10^{-3}
post-trial** significance: 2.7σ

Search for litermediete-scale uMECR Antsofroples

Observed Excess Map - E > 60 EeV

Model Excess Map - Active galactic nuclei-E $>60 \mathrm{EeV}$

$f=7 \%, \psi=7^{\circ}$
pre-trial* p -value: 5×10^{-4}
post-trial** p-value: 3×10^{-3}
post-trial** significance: 2.7σ

Galactic coordinate
$f=10 \%, \psi=13^{\circ}$
pre-trial* p-value: 4×10^{-6}
post-trial** p-value: 4×10^{-5}
post-trial** significance: 3.9σ

Observation of dipole above 8 EeV

First Harmonic Harmonic analysis in right ascension α ($\mathrm{X}^{2} / \mathrm{dof}=10.5 / 10$)

E [EeV]	events	amplitude r	phase [deg.]	$P(\geq r)$
$4-8$	81701	$0.005_{-0.002}^{+0.006}$	80 ± 60	0.60
>8	32187	$0.047_{-0.007}^{+0.008}$	100 ± 10	2.6×10^{-8}

significant modulation at 5.2σ (5.6σ before penalization for energy bins explored)

UHECR Astronomy?

Isotropic $(E<8 \mathrm{EeV})$

Physics Goal of UHECR Astrophysics

8 Origin and Nature of Ultra-High Energy Cosmic Rays (UHECRs) and Particle Interactions at the Highest Energies

How frequent?: Energy spectrum
$\not{ }^{\&}$ What kind of particle?: Mass composition

Where come from?: Arrival direction

Recent Results and New Puzzle

\& Precise observation of the flux suppression above $10^{19.5} \mathrm{eV}$, discrepancy on suppression energy in TA/Auger.

E Gradually increase heavier composition above the ankle.
\& lighter composition above $10^{19.7} \mathrm{eV}$?
\& Hot/warmspots, correlation with nearby star burst galaxy.
\& Flux suppression due to GZK process or maximum energy of accelerator?
\& Heavier composition or problem of hadron interaction model? proton fraction, mass composition above $10^{19.7} \mathrm{eV}$?
\& Anisotropy as indication of additional light component?
\& Particle physics extrapolation at the highest energies?

On-going upgrade: TA×4

Detailed measurement on Hotspot Enlarge the fourfold coverage to $\mathrm{TA} \times 4=$ Auger, 3000 km 2

TAx4 SD

Expected in 2020 (Simulation)

E. Kido in ICRC 2017

On-going upgrade: AugerPrime

Install $4 \mathrm{~m}^{2}$ Scintillator to measure the mass composition by SD.

M. Unger R. Smida in ICRC2017

Fibers routing

PMT/SiPM

Improve electromagnetic/muon separation of SD to measure the mass composition above $10^{19.7} \mathrm{eV}$.
© Boost in statistics by a factor of ~ 10 compared to FD Xmax analysis.
\& Small PMT in the water tank, FD operation during moon night. © Origin of flux suppression, proton contribution above $10^{19.7} \mathrm{eV}$, new particle physics beyond the human-made accelerator.

1. EUSO-TA: Ground detector installed in 2013 at Telescope Array site: currently operational
2. EUSO-BALLOONS: 1 st balloon flight from Timmins, CA (French Space Agency) Aug 2014; NASA Ultra long duration flight: SPB 2017; NASA SPB-2 2020
3. TUS (2016): free-flyer [307][CRI128]
4. MINI-EUSO (2017): Detector from International Space Station (ISS: 30kg 2017). Approved by Italian and Russian Space agencies
5. K-EUSO (2022): ISS Approved by Russian Space Agency
6. POEMMA (2025+): NASA twin free-Flyer

Physics goal and future perspectives

Origin and Nature of Ultra－high Energy Cosmic Rays（UHECRs）and Particle Interactions at the Highest Energies

$$
5-10 \text { years }
$$

Exposure and full sky coverage TA $\times 4+$ Auger
K－EUSO ：pioneer detection from space and sizable increase of exposure

Detector R\＆D Radio，SiPM， Low－cost Fluorescence Detector（FD）
＂Precision＂measurements AugerPrime
Low energy enhancement
（Auger infill＋HEAT＋AMIGA， TALE＋TA－muon＋NICHE）

Next－generation observatories
In space（ $100 \times$ exposure）：POEMMA，Super－EUSO Ground（ $10 \times$ exposure with high quality events）：

量量期 Fluorescence detector Array of Single－pixel Telescopes

\＄Target ：＞ $10^{19.5} \mathrm{eV}$ ，ultra－high energy cosmic rays（UHECR）and neutral particles
\uparrow Huge target volume \Rightarrow Fluorescence detector array

Fine pixelated camera

Single or few pixels and smaller optics

Too expensive to cover a huge area

Low－cost and simplified／optimized FD

Each telescope： 4 PMTs， $30^{\circ} \times 30^{\circ}$ field of view（FoV）．
\uparrow Reference design： $1 \mathrm{~m}^{2}$ aperture， $15^{\circ} \times 15^{\circ}$ FoV per PMT
\uparrow Each station： 12 telescopes， 48 PMTs， $30^{\circ} \times 360^{\circ} \mathrm{FoV}$ ．
\star Deploy on a triangle grid with 20 km spacing，like＂Surface Detector Array＂．
\uparrow If 500 stations are installed，a ground coverage is $\sim 150,000 \mathrm{~km}^{2}$ ．
\downarrow Geometry：Radio，SD，coincidence of three stations being investigated．

FAST Expected Exposure

\star Conventional operation of FD under 10~15\% duty cycle

- Target: > $10^{19.5} \mathrm{eV}$
\uparrow Observation in moon night to achieve 30\% duty cycle,
\rightarrow Target: $>10^{19.8} \mathrm{eV}=$ Super

GZK events

- Test operation by Auger FD
\downarrow Ground area of $150,000 \mathrm{~km}^{2}$ with 30% duty cycle $=45,000 \mathrm{~km}^{2}$ ($15 \times$ Auger, cost ~ 100 Million USD)
-450 events/year

Full-scale FAST Prototype

\uparrow Confirmed milestones by EUSO-TA Telescope

- Stable operation under high night sky backgrounds.
\uparrow UHECR detection.
- T. Fujii et al., Astropart.Phys. 74 (2016) 64-72, arXiv: 1504.00692
\uparrow Next milestones by new full-scale FAST prototype
\uparrow Establish the FAST sensitivity.
\uparrow Detect a shower profile including $\boldsymbol{X} \max$ with FAST

PMT Calibration

Single photo electron

YAP pulser (YAlO3:Ce scintillator +241 Am source) attached on each PMT surface

Detection Efficiency: FAST PMTs

UV LED illuminating the front of the camera

Telescope alignment with stars

Mirror reflectance and filter transmittance

Raytracing simulation for spot sizes and angular responses

Mirror alignment by 2 LED

focal plane 50 mm offset

童青昆 Distant vertical laser comparison in Data／MC Fluorescence detector Array of Single－pixel Telescope．

Single event

Average of 284 triggers

\uparrow Ultraviolet vertical laser at a distance of $20.85 \mathrm{~km}, E=4.4$ $\mathrm{mJ}, \lambda=355 \mathrm{~nm}$ ，
\star Every 30 minutes during a clear night，equivalent to a UHECR with $\sim 10^{19.5} \mathrm{eV}$
\downarrow Calculate expected signal by simulation and good agreement with observed data．
\downarrow Monitoring the transparency of the atmosphere．

Event search

- Data on Oct.5th 2016
- 62194 triggers
- PMT1,2,3,4
\star Circle size $=$ significance
\uparrow Remove airplane ($>35 \mu \mathrm{~s}$) and laser events (time information).
- Two significant signal in PMTs
$\star 90$ events survived
$\downarrow 2$ events found as candidates.
\downarrow Check TAFD reconstruction result.

First lights from UHECR

(1) 2016/10/05 06:37:49.525424540

pmt_0_20161005_063749_525403588
TAFD

TAFD
$\log E=18.08$
$R_{\mathrm{p}}=2.40 \mathrm{~km}$
(2) 2016/10/05 10:25:50.781802380

Too close

Highest UHECR, $\log E=18.55$

\uparrow Fully remote operation
\star Automated shutdown procedure
\uparrow Monitor a shutter by an infrared camera
\uparrow IP camera (PIC1008WN), relay module (ETH002)
\uparrow Total operation time reaches 201 hours by July.

Highest event, $E=10^{18.55} \mathrm{eV}, \boldsymbol{R}_{\mathrm{p}}=3.0 \mathrm{~km}$ by TA FD

Install FAST at Auger and TA for a cross calibration.
\downarrow Profile reconstruction with geometry given by SD (smearing gaussian width of 1° in direction, 100 m in core location).

- Energy: $10 \%, X \max : 35 \mathrm{~g} / \mathrm{cm}^{2}$ at $10^{19.5} \mathrm{eV}$
\uparrow Independent cross-check of Energy and Xmax scale between Auger and TA

Pierre Auger Observatory

Pierre Auger Collaboration, NIM-A (2010)

Summary

\& Precise observation of the flux suppression above $10^{19.5} \mathrm{eV}$, discrepancy on suppression energy in TA/Auger.
\% Gradually increase heavier composition above the ankle.
\& lighter composition above $10^{19.7} \mathrm{eV}$?
\% Hot/warm spots, correlation with nearby star burst galaxy.
\& A next-generation observatory is essential to clarify origins of UHECRs.
\& FAST: fluorescence detector array of Single-pixel Telescopes
\& Installed full-scale FAST prototype at TA site, and
 detects laser and UHECRs.
\% We will install two more telescopes in September 2017.
\% New collaborators are welcome.

Future observatories: TA×4, AugerPrime, K-EUSO and FAST

