Test of hadronic interaction models by a LHC forward experiment; LHCf

MENJO Hiroaki / 毛受弘彰

Nagoya University

ICEHAP Seminar, Chiba Univ., June 22, 2016

Hadronic Interactions

Lots of hadronic interaction models were developed.

For studies of universe For detector simulations

For Cosmic-rays

Wide energy range from 10^9 to 10^{20} eV All processes p-A, π -A as well as p-p

Energy Spectrum of Cosmic-rays

Observation of CRs

Air Shower Technique

Air showers are observed by - Particle detector array (SD) - Florescence telescopes (FD)

Extensive air shower observation

- longitudinal distribution
- lateral distribution
- Arrival direction

- Air shower development

Astrophysical parameters

- Spectrum
- Composition
- Source distribution

From R. Ulrich (KIT)

UHECR experiments

Pierre Auger Observatory SD + FD 3,000km² in Argentina

<u>Telescope Array</u> SD+FD 700km² in USA

AGASA, HiRes and JEM-EUSO

A PAO hybrid event

A PAO hybrid event

From R. Ulrich (KIT)

Composition measurement of UHECRs

Composition of UHECRs is one of important observable.

 ΔX_{max} indicates the different

Error of <X_{max}> measurement

Measurement of HECR

X_{max}

the depth of air shower maximum. An indicator of CR composition

Uncertainty of hadron interaction models Error of <X_{max}> measurement

Extensive air shower observation

- Iongitudinal distribution
- lateral distribution
- Arrival direction

Air shower development

Astrophysical parameters

- Spectrum
- Composition
- Source distribution

Composition at Knee (10¹⁵⁻¹⁶eV)

Spectrum mass decomposition by KASCADE collaboration :

Change in spectrum slope due to mass composition (large uncertainties due to models) or change in hadronic interactions.

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25, astro-ph/0505413 ref. T.Pierog in HESZ2015

Hadronic interaction

Hadronic interaction

taken from Stefan Gieseke $^{\bigcirc}$

Hadronic interaction

Large Hadron Collider

Overall view of the LHC experiments.

**

The Large Hadron Collider (LHC)

 pp
 6.5TeV+6.5TeV
pp
 \rightarrow E_{lab} = $9x10^{16}eV$ 2015

 pp
 3.5TeV+3.5TeV
 \rightarrow E_{lab} = $2.6x10^{16}eV$ 2010-2011

 pp
 450GeV+450GeV
 \rightarrow E_{lab} = $2x10^{14}eV$ 2009,2010

 +
 $\sqrt{s=2.76TeV}, 8TeV$ A-A/p-A PbPb
 $\sqrt{s_{NN}}=2.76TeV$ $2\overline{0}1\overline{1}$ $2\overline{0}1\overline{1}$

 p-Pb
 $\sqrt{s_{NN}}=5TeV$ $2\overline{0}12$

Energy Flow in the forward region

Challenge of limited phase space coverage

More than 50% of shower from $\eta > 8$

Salek et al., 2014)

17

14

[REMINDER] 空気シャワーのキーパラメータ

Key Parameters

- Forward Energy Spectrum \rightarrow <u>LHCf</u>, ZDC and etc.
- Inelasticity k= $1-p_{lead}/p_{beam}$ \rightarrow LHCf, ZDC and etc.
- Secondary interactions

+Nuclear Effect @ CR-Air

The LHCf collaboration

The LHCf collaboration involves ~30 members at 10 institutions.

Experimenta Setup

The LHCf detectors

40mm

Sampling and Positioning Calorimeters

- W (44 r.l $\,$, $\,1.7\lambda_{I}$) and Scintillator x 16 Layers
- Four positioning sensitive layers XY-Scintillator bars (Arm1) and XY-Silicon strip(Arm#2
- Each detector has two calorimeter towers, which allow to reconstruct π^0 Expected Performance
 - Expected Performance Energy resolution (> 100GeV) < 5% for Photons 40% for Neutrons Position resolution < 200µm for Photons a few mm for Neutrons

Front Counter

- thin scintillators with 80x80mm²
- To monitor beam condition.
- For background rejection of beam-residual gas collisions by coincidence analysis

The LHCf detectors

LHCF

silicon strip detector

Detector in the LHC tunnel

Operation in 2015

- LHCf physics operation with pp $\sqrt{s}=13$ TeV has been completed !!
 - LHCf detectors were installed in Nov. 2014

LHC

- □ Special physics operation with low pile-up in 9 13 June 2015.
- □ After the operation, LHCf detectors were removed on 15 June during TS1.

Photo @ CERN Most of collaborators were in the front of the LHCf control room.²³

Operation in Run II

- 26.6 hours of operation with DAQ rate of 200 500 Hz
- 39 M shower events and 0.53 M π^0 events were obtained.
- The final triggers of LHCf were sent to ATLAS for common operation.

LHC

Arm2 Event Display

LHCf Results

	Photon	π 0	Neutron
p-p √s=0.9TeV	PLB 715 (2012) 298-303	-	
p-p √s=2.7TeV		arXiv:1507.08764	
p-p √s=7 TeV	PLB 703 (2011) 128-134	PRD86(2012)092001 arXiv:1507.08764	PLB 750 (2015) 360-366
p-p √s=13 TeV	Preparing		On-going
p-Pb √s=5TeV	PRC 89 (2014) 065209		
(p-Pb √s=8TeV)			

Photons, p-p √ s=7TeV

- No model can reproduce the LHCf data perfectly.
- Data points are on the middle of MC predictions except E < 500GeV.

Neutral Pions at 7TeV p-p

Photons, p-p √s=13TeV

len

HC

Comparison with 7TeV result

LHC

Short summary of results

■ LHCf results (comparison with model predictions) ⇒ No model can reproduce data perfectly.

FC

γ,π⁰: data is located in the band of model predictions.
 n: higher flux at zero degree than any models.

What's the next ?

What are sources of discrepancies between data and models predictions ?

The LHCf data, inclusive spectra of photons, π^0 , neutrons, clearly requires the tuning/modification of models. To understand the discrepancy, process-related data are really helpful for the model developers

J Diffractive / non-diffractive selection by ATLAS information.

What data are additionally needed to test/tune the models ?

QGSJET2 and EPOS has been tuned with several data taken at p-p \sqrt{s} =7TeV. However issues related to UHECRs are not solved yet. => Additional data are needed.

Solution cross section of other mesons, η, ρ, K and etc. LHCf can access the production cross section of η in the forward region.

- \boxed{M} p- π interaction in the air-shower development. LHCf+ATLAS can measure p- π collisions **at LHC**
- ✓ Test of models at a lower collision energy LHCf goes to RHIC(p-p √s=500GeV) at BNL

Diffractive collisions

Event categorization with non-diffractive and diffractive collisions.

LHC

Investigation of photon spectrum

Contribution of diffractive collisions

Photon, p-p √s=13TeV, η>10.94

Inclusive spectra: QGSJET2 ~ EPOS-LHC

Contribution of Diffraction QGSJET2 < EPOS-LHC

LHCf ATLAS

<u>The common operation with ATLAS</u> <u>has been successfully done in 2015.</u> The event selection by using number of tracks measured by ATLAS is a powerful tool to identify diffractive or non-diffractive events

Common analysis is on-going

n measurement

Peaks corresponding to π^0 , η

Measurement of $p-\pi^0$ collisions

<u>LHC is p-п collider also ?</u>

proton may collide the pion cloud around coming proton. The pionexchange events are tagged with the detection of one high energy neutron in the very forward region.

p+p → n + (π⁺ + p) → n + X p: 6.5 TeV, π:~1.0TeV → $\sqrt{s_{p\pi}}$ = 6 TeV

Measurement of π +p interactions is very important as the hadronic interaction of secondaries in Air showers

- Hadronic interaction models is one of the keys for precise measurement of UHECRs
- LHCf is a forward experiment of LHC. LHCf published the results of photons, π⁰ and neutrons at p-p with several collision energies of 0.9, 2.76, 7 and 13TeV.
- New data from LHCf, diffractive studies, p-π⁰ collisions, measurement at RHIC, will be provided and hadronic interaction models will be improved.

Measurement at RHIC