

Weak Lensing Cosmology from the Subaru Hyper Suprime-Cam Survey First Year Data

Hironao Miyatake

Nagoya University On Behalf of the HSC Collaboration

Outline

- Cosmic acceleration and dark energy
- Weak lensing cosmology
- Subaru Hyper Suprime-Cam (HSC)
 - First-year results from HSC survey
 - Cosmic shear in real space and Fourier space
 - Galaxy-galaxy lensing and clustering (ongoing work)
- Future prospects

Planck Collaboration (2018)

We Would NOT Exist without Dark Matter

Without Dark Matter

With Dark Matter

Credit: N. Yoshida

www.spacetelescope.org

The Universe has been evolved under the competition between

- Gravity due to dark matter, and
- Accelerating expansion due to dark energy.

Dark Sector of the Universe

Dark Matter

- Non-luminous, unknown matter.
- Source of gravity to form galaxies and galaxy clusters.
- New particle?

Dark Energy

- Unknown energy.
- Source of cosmic acceleration.
- Breakdown of Einstein's GR?
- Fifth force?

Cosmology Probes

- Geometry of the Universe
 - Type la supernovae (SN)
 - Baryon Acoustic Oscillations (BAO)
- Growth of structure
 - Cluster number count (CL)
 - Weak gravitational lensing (WL)
 - Redshift space distortions (RSD)
 - → sensitive to modified gravity

Credit: SDSS/BOSS

Cosmology Probes

- Geometry of the Universe
 - Type la supernovae (SN)
 - Baryon Acoustic Oscillations (BAO)
- Growth of structure
 - Cluster number count (CL)
 - Weak gravitational lensing (WL)
 - Redshift space distortions (RSD)
 - → sensitive to modified gravity

Credit: SDSS/BOSS

(Strong) Gravitational Lensing

Weak Gravitational Lensing

WL shear is only a few % of intrinsic shape of galaxies

Credit: Subaru HSC

Weak Gravitational Lensing in a Nutshell

Weak lensing is a unique probe of the matter (including **dark matter**) distribution

Weak Lensing Measurement

 Weak lensing coherently changes shapes of galaxies

$$\gamma \propto \frac{D_A(z_l, z_s) D_A(z_l)}{D_A(z_s)} \delta(z_l)$$

 Intrinsic shapes of galaxies (shape noise) can be beaten down using a number of galaxies, assuming the position angle is randomly oriented.

→ Need (at least) thousands of galaxies to perform a high signal-to-noise measurement

Galaxy Shape Measurement

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Gravitational lensing

causes a shear (g)

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

lmage also contains noise

Stars: Point sources to star images: Point Spread Function (PSF)

Superb image quality is required.

Extracting Cosmological Information

Compare through correlation functions

Need to observe a large volume of the Universe.

What is Necessary for Weak Lensing Cosmology?

- A large number of galaxies to perform a high signal-tonoise measurement
- Superb image quality
- Observations of a large volume of the Universe.

Subaru Hyper Suprime-Cam (HSC) is one of the best instruments to perform precision weak lensing cosmology.

Subaru Telescope

Summit of Maunakea, Hawaii Island (4200m)

Subaru Telescope

Prime Focus: Wide Field-of-View

8.2m Mirror: Plenty of Galaxies

Adaptive Optics: Superb Image Quality

114 2k x 4k back-illuminated fully-depleted CCDs developed by Hamamatsu and NAOJ

Hyper Suprime-Cam (HSC)

1 billion pixels 2GB/shot

Miyazaki et al. (2018a) Komiyama et al. (2018)

HSC Field-of-View

A galaxy cluster at z~1 is observed like...

SDSS

HSC

HSC Subaru Strategic Program (SSP) Survey

HSC Subaru Strategic Proposal (SSP) Survey

Wedding-cake-type survey

- Wide (1400 deg², i_{lim}~26, grizy)
- Deep (28 deg², i_{lim}~27, grizy + NBs)
- Ultradeep (3 deg², i_{lim}=27.7, grizy + NBs)

Competitors in the World

Survey Field

- HSC Survey Fields selected based on overlap with SDSS regions, and other interesting datasets (ACT, PB, VIKING, Spitzer, GAMA, VVDS, etc...)
- Spread along the equator
- For details, see a survey overview paper: Aihara et al. (2018a)

Nagoya University is one of the leading institutes!

Matter Density Reconstruction from Observables

Weak lensing shear is measured by averaging galaxy shapes

Matter density fluctuation

HSC First-year Galaxy Shape Catalog

- WIDE layer: 6 fields, 170deg²
- Full-depth full-color: i~26 (5σ)
- Excellent seeing: FWHM~0.6" (c.f., DES~0.9", KiDS~0.66")
- High number density: ng~23 gal/arcmin² (c.f., DES~7 gal/arcmin², KiDS~10 gal/arcmin²)
- i<24.5, resolution>1/3
- Calibrations based on image simulations.
- Publicly available.

Mandelbaum, HM et al. (2018a) Mandelbaum et al. (2018b)

Source Galaxy Redshifts

Redshift is estimated from photometric colors (called photo-z)

HSC First-year Science Highlights

2D and 3D dark matter map Cosmic shear in Fourier space and real space Galaxy-galaxy clustering + lensing

Dark Matter Distributions Reconstructed from WL

How Can We Compare Observations to Theory?

Initial condition of large scale structure is from quantum fluctuations. Theories cannot predict where are cluster, galaxies, and dark matter, but **can predict their statistical properties**.

Credit: ESA

Correlation Function and Power Spectrum

Credit: ESA

 $\xi_{mm}(r) = \langle \delta_m(\vec{r}') \delta_m(\vec{r}' + \vec{r}) \rangle_{\vec{r}'}$ Spatial correlation of matter fluctuations Cosmological Constraints from Correlation Function

$$\xi_{mm}(r) = \langle \delta_m(\vec{r}')\delta_m(\vec{r}'+\vec{r}) \rangle_{\vec{r}'}$$

Amplitude of matter fluctuations σ_8

Growth of matter fluctuations D(z)

D(z) can be measured by correlation function measurements in redshift slices. D(z) is a function of

- Matter energy density Ω_m
- Dark energy density Ω_{Λ} , and
- Dark energy equation of state parameter $p = w\rho$.

Cosmological Weak Lensing: Cosmic Shear

Cosmic shear can infer matter correlation function.

$$\xi_{\gamma\gamma}(r) = \langle \gamma(\vec{r}')\gamma(\vec{r}'+\vec{r}) \rangle_{\vec{r}'}$$
$$\xi_{mm}(r)$$

Cosmic shear can be measured in Fourier Space.

Cosmic Shear Tomographic Power Spectra

bin1: 0.3<z<0.6, bin2: 0.6<z<0.9 bin3: 0.9<z<1.2, bin4: 1.2<z<1.5

4-bin tomography in 0.3 < z < 1.5

Focused on 300 < ℓ < 1900 to avoid potential systematic effects

- high l: baryon feedback
- low ℓ : residual shape noise

S/N of cosmic shear is ~16

BB & EB signals are consistent with zero

Blind Analysis is Essential to Avoid Confirmation Bias

Blind Analysis

Galaxy shapes were changed by multiplying a blinded number.

Our analysis was unblinded when we are confident on systematic tests listed in the table.

Parameter	symbols	prior
physical dark matter density	$\Omega_{ m c}h^2$	flat [0.03,0.7]
physical baryon density	$\Omega_{ m b}h^2$	flat [0.019,0.026]
Hubble parameter	h	flat [0.6,0.9]
scalar amplitude on $k = 0.05 \mathrm{Mpc}^{-1}$	$\ln(10^{10}A_s)$	flat [1.5,6]
scalar spectral index	$n_{ m s}$	flat [0.87,1.07]
optical depth	au	flat [0.01,0.2]
neutrino mass	$\sum m_{\nu} [eV]$	fixed $(0)^{\dagger}$, fixed (0.06) or flat [0,1]
dark energy EoS parameter	w	fixed $(-1)^{\dagger}$ or flat $[-2, -0.333]$
amplitude of the intrinsic alignment	A_{IA}	flat [-5,5]
redshift dependence of the intrinsic alignment	$\eta_{ m eff}$	flat [-5,5]
baryonic feedback amplitude	A_B	fixed $(0)^{\dagger}$ or flat $[-5,5]$
PSF leakage	ã	Gauss (0.057, 0.018)
residual PSF model error	β	Gauss (-1.22, 0.74)
uncertainty of multiplicative bias m	$100\Delta m$	Gauss (0,1)
photo- z shift in bin 1	$100\Delta z_1$	Gauss (0, 2.85)
photo- z shift in bin 2	$100\Delta z_2$	Gauss (0, 1.35)
photo- z shift in bin 3	$100\Delta z_3$	Gauss (0, 3.83)
photo- z shift in bin 4	$100\Delta z_4$	Gauss (0,3.76)

Cosmology Intrinsic alignment Baryonic effect PSF modeling error Photo-z uncertainties

Cosmological Constraint on σ_8 and Ω_m

No significant inconsistency between Planck and HSC

Hikage et al. (2019)

Constraints on the Nature of Dark Energy

The constraint is still weak, but will be more stringent with the full HSC data.

Cosmic Shear Tomographic Correlation Functions

Consistent with the power spectra measurement

Galaxy-galaxy Lensing x Galaxy-galaxy Clustering

Combine lensing and clustering signals to extract cosmological constraints

Galaxy-galaxy Clustering Measurement

Galaxy Distribution

$$\xi_{gg}(r) = \langle \delta n_g(\vec{r}') \delta n_g(\vec{r}' + \vec{r}) \rangle_{\vec{r}'}$$

Galaxy galaxy clustering measures how likely a neighboring galaxy exists at distance *r* from a galaxy.

Amplitude of Galaxy-galaxy Clustering Signal

Baryon acoustic oscillations (BAO)

Sensitive to geometry of Universe

Amplitude of g-g clustering signal

Sensitive to Growth of structure, e.g., σ₈ More signal-to-noise compared to BAO

Galaxies: Biased Tracer of Dark Matter

Galaxy Distribution

Dark Matter Distribution

Since most of matter in the Universe is dark matter, we need to use dark matter distribution to extract cosmological information. Galaxy distribution cannot be directly used.

How Does Galaxies Populate the Universe?

Dark Matter Distribution

Dark matter collapses into dark matter halos. Self-gravitating systems of dark matter

How Does Galaxies Populate the Universe?

Dark Matter Distribution

Dark matter collapses into dark matter halos.

Galaxies are formed in halos as a result of gas accretion.

Calibration by Galaxy-galaxy Weak Lensing

Dark Matter Distribution

Dark matter halos are the biased tracer of the underlying dark matter distribution.

Weak lensing measurement around galaxies (= average dark matter distributions around galaxies) can be used to calibrate the connection between them.

HSC x BOSS Measurement

SDSS-III/BOSS DR11 spec-z sample

- ~8300 deg²
- z = [0.15, 0.35], [0.47, 0.55], [0.55, 0.70]
- Luminosity cut is applied to obtain volumelimited sample.

HSC first-year shape catalog

- 137 deg², <z>~1.0
- Galaxy shape catalog is blinded

Measurements

Modeling Lensing Signal

Cross-correlation function of **dark matter halos** and **surrounding dark matter**

$$\xi_{hm}(r) = \langle \delta n_h(\vec{r}') \delta_m(\vec{r}' + \vec{r}) \rangle_{\vec{r}'}$$

Modeling Lensing Signal

Cross-correlation function of **dark matter halos** and **surrounding dark matter**

Modeling Clustering Signal

Correlation function of **dark matter halos** $\xi_{hh}(r; M_1 . M_2) = \langle \delta n_h(\vec{r}') \delta n_h(\vec{r}' + \vec{r}) \rangle_{\vec{r}'}$

Modeling Clustering Signal

Correlation function of **dark matter halos** $\xi_{hh}(r; M_1 . M_2) = \langle \delta n_h(\vec{r}') \delta n_h(\vec{r}' + \vec{r}) \rangle_{\vec{r}'}$ **W How galaxies populate DM halos** $N_g(M)$

Modeling Clustering Signal

Correlation function of **dark matter halos** $\xi_{hh}(r; M_1 . M_2) = \langle \delta n_h(\vec{r}') \delta n_h(\vec{r}' + \vec{r}) \rangle_{\vec{r}'}$ **W** How galaxies populate DM halos $N_g(M)$ **Clustering Signal** $\xi_{gg}(r)$

Major Challenge: Building a Robust Model

Correlation Functions

Galaxy populations

$$[ξ_{hm}(r; M_h, z; θ)]$$

 $[ξ_{hh}(r; M_{h1}, M_{h2}, z; θ)]$

 θ : Cosmological parameters

Clustering signal

Major Challenge: Building a Robust Model

- It is not straight forward to model the connection between halos and underlying dark matter distributions.
- In previous studies, analytical fitting formulae have been used, which can cause systematic bias.

Dark Emulator

- Dark Emulator provides the following summary statistics for a given cosmology
 - Halo-matter correlation function: ξhm
 - Halo-halo correlation function: ξ_{hh}
- Measure summary statistics in 1 [Gpc/h]³ and 2 [Gpc/h]³ simulations with 2048³ particles for 101 cosmological parameter sets.
- Interpolate these measurements to a given cosmology using Gaussian process.
- We no longer rely on fitting formulae!

 $\theta = (\omega_b, \omega_c, \Omega_{\wedge}, A_s, n_s, w)$

Major Challenge: Building a Robust Model

- Nobody knows what is the "correct" model of galaxies.
- We adopt an empirical, standard model (halo occupation distribution; HOD) and see if it is robust against possible population models of galaxies.

Cosmology Challenge

Test the robustness of our model by fitting mocks with variants.

Our "fiducial" model

- "Standard" HOD (Zheng et al. 2005)
- Off-centering PDF: Gaussian
- Satellite distribution: NFW

Cosmology Challenge

Test the robustness of our model by fitting mocks with variants.

Cosmology Challenge

Test the robustness of our model by fitting mocks with variants.

HM et al. (in prep)

The cosmology challenge is almost done. Stay tuned for cosmological constraints!

Future Prospects

- We are currently creating the galaxy shape catalog based on the HSC data up to the third year of the survey
- Survey area will be extended from 140 deg² to 270 deg².
- We plan to complete the HSC SSP survey in 2020 to reach 1400 deg².

Sum Re Subaru Measurement of Images and Redshifts

Prime Focus Spectrograph

- 1.3 deg diameter field of view covered by 2400 fibers.
- The SSP survey is expected to start in 2022.
- BAO and combined cosmology analysis with HSC is one of the main science drivers.

Galaxy Imaging Surveys in 2020s

Euclid (EU) 15,000 deg² J_{lim}~24

WFIRST (USA) 2,200 deg²,J_{lim}~27

Summary

- Subaru Hyper Suprime-Cam (HSC) started the imaging survey in 2014.
- HSC is a unique instrument that enables a wide and deep survey.
- The first-year cosmology results are coming out!
- The Prime Focus Spectrograph (PFS) survey will start in 2022, and 3 large imaging surveys are planned in 2020s
- We are living the golden era of observational cosmology!