High-energy emission from GRBs

Xiang-Yu Wang Nanjing University, China

Collaborators: Hao-Ning He, Ruo-Yu Liu, Qing-Wen Tang Thomas Tam, Martin Lemoine

Gamma-ray bursts are short-duration flashes of gamma-rays occurring at cosmological distances!

Bimodal distribution of durations

Luminosity_{iso} (erg/s)

ILIAN VELASCO

Gehrels, Piro & Leonard 2002, Scientific American

JUAN VELASCO

Gehrels, Piro & Leonard 2002, Scientific American

Gravitation wave detection from GW170817/GRB170817A

SWIFT NEUTRON STAR COLLISION V. 2

ANIMATION: DANA BERRY 310-441-1735 PRODUCED BY ERICA DREZEK

7

Multiwavelength observations of GW170817

Afterglow dominated by angular profile of *E* and Γ
 Initial view off-axis. With time inner material with more energy becomes visible.

CR acceleration in **GRBs**

GRB Neutrino prediction

$\varepsilon_p \varepsilon_{\gamma} \ge 0.3 \, \mathrm{GeV}^2 \Gamma^2$

H envelope He/CO star

Buried shocks No γ-ray emission Precursor v's

Razzaque, Meszaros & Waxman '03 Murase et al. 2013, 2017 **TeV**

Internal shocks Prompt γ-ray (GRB) Burst v's

Waxman & Bahcall '97 Murase & Nagataki 07 Wang & Dai 09 **PeV** External shocks Afterglow X,UV,O **Afterglow** v's

Waxman & Bahcall '00

EeV

Neutrinos in coincidence with gamma-ray bursts?

 γ, ν

IceCube

Gamma-ray satellites

IC40, IC59,

506 GRBs

IC79, IC86-1

distant GRB

 Normal-luminosity GRBs contribute to <1% neutrinos !
 But, no constraints on lowluminosity GRBs and choked jets !

GRB neutrino flux is modeldependent

R >4 ×10^12 cm

- Small dissipation radius scenario
- -- Challenged
- Large dissipation radius scenario

-- OK

But, do not rule out UHECR origin

Fermi satellite

- Fermi LAT covers energy band (100 MeV to > 300 GeV)
- 180 GRBs detected in 10yr
- 34 LAT GRBs with known redshift

Nal: 8 keV - 1 MeV BGO: 200 keV - 40 MeV

Fermi GRB light curvesextended emission 090510 GRB130427A

>100 MeV: much more extended

Synchrotron afterglow scenario ?

(Kumar & Barniol Duran 09, Ghisellini et al. 09, Wang et al. 10)

- afterglow synchrotron emission to account for all the LAT emission:
- Simple PL decay: similar to X-ray/optical afterglows
- Synchrotron flux could match the observed level

(Kumar & Barniol Duran 09)

Broadband modeling

- Dynamics: Relativistic blast wave
- Radiation: Synchrotron, IC
- Input parameters:
 E, θ, Γ, n, p, ε_e, ε_B

Detailed broadband modeling...

(He, Toma, Wu, Wang & Meszaros 2011; Liu & Wang 2011)

□ At early time, afterglow synchrotron emission model falls below the observed flux -> Internal origin

Correlated spikes seen by Fermi

Support internal origin for the early prompt LAT emission

Abdo et al. 2011

Detailed broadband modeling...

(He, Toma, Wu, Wang & Meszaros 2011; Liu & Wang 2011)

 At early time, afterglow synchrotron emission model falls below the observed flux -> Internal origin
 For late GeV emission, the afterglow synchrotron scenario fits the data well

One issue for the synchrotron scenario of late GeV emission

- **Expected:** maximum synchrotron energy:
- ~50 MeV in the shock rest frame (Bohm acceleration approximation)
- Observer frame: 50MeVxΓ, Γ<100 at 1-10ks</p>

$$\Gamma = 200 E_{54}^{1/8} n_{-2}^{-1/8} (t_2/(1+z))^{-3/8}$$

- Observed: E_max~5GeV at 1-10ks
- >10 GeV photons challenge the synchrotron scenario (e.g. Piran & Nakar 10; see, however, Kumar 2014)

Even worse ...

(Lemoine 2012)

 Bohm approximation breaks down for microturblence magnetic field

 $\lambda = 10 - 30(c/\omega_{pi})$

$$\frac{R_L(\gamma_{e,max})}{\lambda} = 25\lambda_1^{-2/3}n_{-2}^{-1/24}\epsilon_{B+,-2}^{-1/2}E_{54}^{-1/8}t_2^{3/8} \gg 1$$

Lead to an even lower maximum synchrotron energy...

GRB130427A

Fermi collaboration 2013

- the brightest GRB so far

Origin of >10 GeV photons ?

A natural way out :

- Electron inverse Compton (IC) processes:
- Afterglow synchrotron self-Compton (SSC) emission

(Zhang & Meszaros 2001; Wang, Liu & Lemoine 2103;...)

Synchrotron + SSC components

(Wang, Liu & Lemoine 2103)

- The SSC intensity is sensitive to the circumburst density
- No obvious flattening seen at the transition

Modeling light curves with different ISM densities

(Wang, Liu & Lemoine 2103)

Rapid decay due to limited maximum synchrotron energy

90 GeV photon at 80 s comes from SSC

 10^{6}

LAT data of 130427A

Possible signature of spectral hardening at ~10
 GeV (~2.9 σ for 3-80 ks)

Interpreted as spectral hardening

Broad-band modeling: Synchrotron + IC components

(Liu et al. 2103)

GRB 130427A

100 GeV flux

♦ Below ~3GeV, synchrotron flux is still the dominant component

♦VERITAS data at 70ks inconsistent with SSC ?

• SSC flux @100GeV is 3*10^-8 erg/cm^2/s at t~200s

• F(100GeV)~t^-1.35

• At 70 ks, SSC flux @100GeV is 1.1*10^-11 erg/cm^2/s

SSC model not ruled out...

GRB190114C: Magic sub-TeV

GCN 23701

MAGIC detects the GRB 190114C in the TeV energy domain

The MAGIC telescopes detected very-high-energy gamma-ray emission from GRB 190114C. The observation started about 50s after the Swift TO. The GRB data of MAGIC shows a clear excess of gamma-ray events with the significance >20 sigma in the first 20 min (starting at T0+50s) for energies >300GeV. The relatively high detection threshold is due to the large zenith angle of observations (~60 deg.) and the presence of partial moon. After the first bright flash the source is quickly fading.

Mirzoyan + 19

LHAASO

KM2A: • 5195 Scin's: 1 m², 15m spacing • 1171 MDs: 36 m², 30m spacing

WFCTA: 18 Cherenkov telescopes (1024 pixels/telescope)

> WCDA: 3120 cells (25m²/cell)

Daochen, 4410 m a.s.l., 600 g/cm² (29°21' 31" N, 100°08'15" E)

Construction status

A glance from sky: 1/4 array is there !

Water Cherenkov Detector Array (big ponds) Three ponds will be built in this year.

The 1st has been filled up and turned on for operation

Ground Wide Angle Cameras System

SVOM

Ground Wide Angle Cameras System (GWAC) is the follow-up telescope of SVOM, already in use
 GWAC includes 40 18-cm telescopes, partly supported by Nanjing University

Thank you!