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Proposed DISCO instrument

Calibration unit for large volume water and ice Cherenkov detectors

Exploratory unit for detailed sea ice properties

Proposed in the US under the NSF MRI (Major Research Infrastructure) ~$1M

Looking for collaborators & applications more broadly

Support from IceCube, KM3NeT, Baikal, P-ONE, TRIDENT, plus the sea ice community

Potential applications to other detectors

Measurements include absorption & scattering by position, orientation, & frequency




A new era in astroparticle physics has begun with the discovery of high-energy astrophysical
neutrinos, a coincidence observation of energetic neutrinos and y-rays from a blazer [ 1], evidence for
neutrino emission from NGC1068 [2] and from the Milky Way by the IceCube Observatory. Further
progress in this emerging field is fueled by multiple large volume neutrino detectors now operating,
all with funded efforts for expansions: IceCube [3] with its Upgrade [4] at the geographic South Pole,
the Mediterranean ANTARES with KM3NeT [5], and Lake BAIKAL [6] with the GVD extension.
Proposed large detectors include P-ONE [7] in the Pacific, IceCube-Gen2 (8], and TRIDENT.

Polar sea ice forms one of the key components of Earth’s climate system that is most impacted
by planetary warming. As a material, it is a multiscale, polycrystalline composite of pure ice with
brine, air, and particulate inclusions. Moreover, the sea ice interior hosts extensive communities
of microbial extremophiles like algae, that serve as a critical lynch-pin in the marine food web.
Improving projections of the health of polar ecosystems in the face of precipitous sea ice losses,
requires advances in understanding how algal biomass distributions are correlated with local ice
conditions. Wide-ranging surveys of these internal properties over large expanses of sea ice with
portable instruments are not presently practical, with much present information derived from ice
core studies. An instrument to conduct large-area surveys of biomass density as a function of depth
and microstructural features would enable significant progress in understanding algal dynamics in
the rapidly changing polar marine environment. The optical properties of sea water have been
subject to multiple studies (ex. [14]). Efforts to determine the transport of light through ocean water
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Mo s [ & Instrumental Design & Description

more hole-based « Two optical modalities:
geometry... * Ultra-sensitive cameras and LED illumination systems
*pulsed laser sources and precisely timed optical
detection with photomultiplier (PMT)
*Two modules (receiver, emitter) in a bistatic
configuration deployable via winch system
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Figure 2: A 3D model of the basic design concept for the emitter and receiver module.

Modules built from some LEDs & Lasers in emitter
lceCube Upgrade unit. PMT and PD in
common components receiver unit. Both

modules have cameras.




Camera Measurement Principle
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Expected camera image using a 2° beam at 3 m nodule
separation. Obtained optical medium parameters based
on preliminary image analysis.




Similar in principle
to the ice dust
loggers employed
in the past

Position &
orientation sensors
onboard

Pulsed Laser System Measurement Principle

Absorption and scattering effects on pulse shape and returned light intensity for the

pulsed laser measurement
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Figure 3: Left: DISCO configurations for A: Absorption; B1: Scattering function B2: Anisotropy; C: Sea
ice transmission measurement, Right: Expected camera image using a 2° beam at 3 m distance and obtained

optical medium parameters based on image.
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Figure 7: A: Diagram of the hardware components used in the modules; B: Control flow of the software.
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Figure 10: Schedule for this project broken down
according to Month, Year, and WBS.

Ignore the details...

Too late now for IceCube
Upgrade in 2025-2026

But quick once funded,
about two years to
functional hardware

Targeting water detectors
first, sea ice, and finally
lceCube-Gen2




Conclusions

*We propose a multipurpose optical instrument for neutrino detector calibration
and sea ice observations

« A modular and expansible platform design allows for specialized tasks

*Basic conceptual design is presented, and further sensitivity and optimization
studies are ongoing, to be followed by the construction of a prototype instrument

A design workshop will be held this Fall at the University of Utah. Interested
parties are invited to participate

For sea ice measurements, could
install spectrophotometer for
organic/inorganic absorption
determination/separation

Modules would support
additional instruments as

desired

Nominal operating mode
is a "deployment” but
longer-term monitoring
also possible for ocean

Not funded in NSF MRI 2023, we
are open to other options for
collaboration or helping out
specific other calibration efforts

Workshop at Utah part
of series starting with
Upgrade camera goals

This instrument came
out of the last (Feb
2023) Utah camera
workshop
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Figure 2: Effects of water and ice property uncertainty
on neutrino telescopes. From ANTARES (deep sea water):
A) effect of water absorption coefficient on muon rate, and
B) energy-dependent syvstematic uncertainty on detection
rate in a modern analysis. From IceCube (glacial ice), C)
effect of ice model update between two modern iterations
on cascade angular and D) energy reconstruction.
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Figure 1: Left: Concept of DISCO. LED light cone observed by cameras (left side) and Laser observed by
the PMT logging system (right side). Right: Absorption and scattering effects on pulse shape and returned
light intensity for the pulsed laser measurement.
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Figure 3: Sea ice microstructure and algal absorption spectra. Top row (left to right): The volume
fraction and connectivity of the mm-scale brine inclusions [17] depend strongly on temperature; cm-scale
thin section of columnar sea ice grown under quiescent conditions, under polarized light; granular ice grown
under turbulent or wavy conditions (J.-L. Tison); gap layer in Antarctic sea ice with algae (C. Haas). Bottom
row (left to right): diatom in brine and secreted extracellular polymeric substance, dyved blue (C, Krembs);
comparison of vertical transmission spectra for ice (200 cm) with no algae (red), vs. ice (108 cm) with an algal
bottom layer (D. Perovich); algal absorption spectra for high biomass sites in Antarctica [18|; comparison of
vertical profiles of absorption coefficients at 440 nm for “clean” ice vs. a floe with a particle-laden layer [19].
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A two-day workshop on the use of camera systems

Workshop dates are the 2nd and 3rd of February 2023

Hosted by the Department of Physics and Astronomy at the University of Utah




