

IL<mark>N</mark>NCE

Super-Kamiokande galactic supernova's neutrino burst monitoring

Guillaume Pronost (ILANCE, CNRS - University of Tokyo), for the Super-Kamiokande collaboration ICRC2023 Satellite Workshop Chiba U., August 7th 2023

Supported by MEXT KAKENHI Grant Number JP19H05807

Core-Collapse Supernova Neutrinos

- Since 1987A supernova (SN), we know that in case of supernova a burst of neutrino is expected to be produced few minutes to several hours before the stellar explosion.
- If the SN is close enough, we can detect this burst on Earth and give an early warning to astronomers looking for the light from the stellar explosion.

Super-Kamiokande

World leading Water Cherenkov detector located in the Kamioka Mine (Japan)

- 50 kton water
- ~2m OD viewed by 8-inch
- 32kt photo-sensitive volume
- 22.5kt fid. vol. (2m from wall)
- SK-I: April 1996~
- SK-VII is running
- The detector is filled with 50ktons of gadolinium-loaded water.
- Gadolinium was loaded at 0.01% in the water in Summer 2020, and the concentration was further increased to 0.03% in May 2022. Calibration was completed and the detector is running stably since then.
- Physics targets: Neutrino Oscillations (Solar Neutrino, Atmospheric Neutrinos, T2K) beam), Nucleon decay, Astrophysics (Supernova burst, Diffuse Supernova Neutrino Background, etc.)

Why Gadolinium?

- Gadolinium is the stable nucleus with the highest neutron capture cross-section on Earth. The gadolinium-neutron capture produced a gamma cascade with a total energy of ~8 MeV, allowing to detect and reconstruct the neutron capture.
- This is specially useful to tag Inverse Beta Decay interactions

Hydrogen-neutron capture: single 2.2 MeV gamma \rightarrow Large accidental background \rightarrow Vertex reconstruction difficult

Gadolinium-neutron capture:

Gamma cascade at ${\sim}8~\text{MeV}$

 \rightarrow Lower background

 \rightarrow Vertex reconstruction possible

Supernova Neutrinos in Water Cherenkov Detectors

The SN neutrino burst is composed of (roughly) similar amount of neutrino and antineutrino of each flavours. However, due to cross-sections, the number of detected neutrino interaction will be different.

- In case of Water Cherenkov detector, the main interactions expected are:
 - ▷ Inverse Beta Decay reaction (IBD) $\rightarrow \sim 90\%$ of the expected interactions
 - ▷ Electron Scattering interactions (ES)
 → ~5% of the expected interactions
 Keep the neutrino direction information
 ▷ ¹⁶O interactions (CC and NC)
 - \rightarrow ${\sim}5\%$ of the expected interactions

Using Gd-n to separate IBD and ES

- Water cherenkov detector can extract the direction of the SN from the ES interactions
 - Separating ES from IBD allows to improve the SN direction pointing accuracy of the detector
 - ^b We can use the characteristic **delayed coincidence** between the IBD's positron emission and delayed neutron capture to **tag IBD events**.
 - \rightarrow Gd enhance the detectability of the neutron capture.

SN burst events w/o IBD tagging (10kpc simulation)

SN burst events w/ 72% IBD events tagged/removed (10kpc simulation) (Expected with 0.1% Gd)

Realtime event selection

- In order to monitor event burst within the Super-Kamiokande detector, we are reconstructing and selecting "SN interaction like" events in realtime.
- Realtime selection efficiencies:
 - $^{\triangleright}\!\sim\!\!35.3\%$ of the ES interactions
 - $^{\triangleright}\!\sim\!\!89.5\%$ of the IBD's positron interactions
 - ▷ ~54.4% of the IBD's neutron capture interactions (with 0.03% Gd)
 - \rightarrow ~46% IBD interactions are tagged as IBD
- These realtime efficiencies are lower than the full performance of Super-Kamiokande as hard cuts are applied to remove any potential noise. Offline (slower) analysis reach better performances.

Realtime angular resolution I

- In June 2023, we deployed a new fitter (Maximum Likelihood + HEALPix) to improve the speed and the efficiency of our Supernova direction reconstruction.
- With 0.03% Gd, our last realtime direction pointing accuracy is 3.96±0.13° at 10 kpc (Nakazato model). This reconstruction alone is achieved in less than 10 seconds (with respect to 1.5~2 minutes before).

Realtime angular resolution with other models

Automated SN alarm: GCN

- In case of a burst of events matching our criteria (isotropic distribution and more than 60 good events) Super-Kamiokande will send an alarm. Since December 13th 2021, this alarm is automated:
 - If the number of IBD tagged events is > 10, an automated GCN notice will be distributed.
 - ▷ This GCN notice is currently send by mail, which induces some delay to distribute it.
 - GCN itself is under-going an upgrade ("Kafka") recently, with an unified schema, and a new distribution method which we are implementing. This upgrade will reduce the delay for the GCN notice distribution to less than 1 second.

Realtime supernova monitoring in Super-Kamiokande

ICRC2023 Satellite Workshop Chiba U.

guillaume.pronost@cnrs.fr

Supernova alarm in Super-Kamiokande

Co-operation with telescopes

- If (when) Super-Kamiokande send a supernova alarm to the world, we hope some telescopes will be able to look for it in order to observe the first instants of the supernova burst.
 - In order to increase the probability our alarm will be used, to maximise the change to have combined neutrino-optical observations of SN in the Milky Way, we are made a MoU in June 2023 with the All-Sky Automated Survey for SuperNovae Collaboration (ASAS-SN), a network of 24 telescopes located around the globe
 - $^{\triangleright}$ ASAS-SN implemented an automated follow-up of our SK alarm this month
- If any other telescope collaborations or consortia are interested in making a direct, minimum latency connection with Super-Kamiokande's supernova alarm, please contact us!

Offline Supernova search

In case of supernovae (and failed supernovae) farther away than the SMC, our online monitoring system may missed them. We also perform offline supernova search in our data.

- We did not find any evidence of distant SN bursts from data collected in SK-IV (2008~2018), allowing to define the following upper limits:
 - ightarrow < 0.29 yr⁻¹ supernovae out to 100 kpc (300 kpc for failed supernovae)
- Coincidence with SN2023ixf was also investigated, but no significant signal was observed (ATEL 16070, GCN circular 33916)

Pre-supernovae neutrinos

▶ Before the core-collapse, supernova progenitors starts burning their C, O, Ne, and Si layers. This burning produce a neutrino flux which can reach a luminosity of $\sim 10^{12} L_{\odot}$ (whereas the photon luminosity is $\sim 10^5 L_{\odot}$) [Astropart.Phys. 21 (2004) 303-313)]

$$e^{-} + e^{+} \rightarrow \nu_{x} + \overline{\nu}_{x}$$

- During the Si-layer burning (~few days before the core-collapse), the average neutrino energy is above the IBD threshold (1.8 MeV), allowing a potential detection in Super-Kamiokande and the release of a pre-supernova alarm.
- For Betelgeuse (α -Ori) we can send a warning 10~15 hours before the core-collapse (NMO).

ICRC2023 Satellite Workshop Chiba U.

guillaume.pronost@cnrs.fr

Summary

- Super-Kamiokande is continuously monitoring the detector events to probe any burst indicating a supernova.
 - Thanks to the 0.03% Gd loading in the detector water, we are able to tag ~46% of the Inverse Beta Decay events, providing both a clear SN signal with low BG contamination, as well as a mean to increase the accuracy of the SN direction reco.
 - Super-Kamiokande monitoring system can provide a direction with a resolution of 3.96±0.13° at 10 kpc (assuming Nakazato model, NMO)
 - We are releasing automated alarm through GCN notice within 1.5 minutes following the neutrino burst in the detector.
- Pre-supernova neutrino can be detected few hours before the core-collapse in Super-Kamiokande within 500 pc, further improvement can be expected by combining Super-Kamiokande and KamLAND alarms.
- An MoU has been signed between ASAS-SN and Super-Kamiokande in order to maximise our change for neutrino-optical detection of the next galactic supernova. If any other telescope collaborations are interested in making a direct connection with SK's SN alarm, please contact us!

Backup

SN direction fitter improvement investigations

- **HEALPix** based fitter (**H**ierarchical **E**qual **A**rea isoLatitude **Pix**elation of a sphere):
 - $^{\triangleright}$ A sphere of the sky is made and divided in pixels of equal area
 - The pixels are populated with the projection of each event's reconstructed direction on the sphere.
 - $^{\triangleright}$ The sphere is then smoothed with a gaussian function
 - [▷] The pixel with the maximum number of events is then selected as the SN direction

Realtime angular resolution with other models

All models are with NMO

Summary of Supernova models. Core bounce occurs at 0 s.

Model Name	Wilson ^[1]	Nakazato ^[2]	Mori ^[3]	Hüdelpohl ^[4]	Fischer ^[5]	Tamborra ^[6]
Dimension	1D	1D	1 D	1D	1D	3D
progenitor mass $[M_{\odot}]$	20	20	9.6	8.8	8.8	27
start time [s]	0.03	-0.05	-0.256	-0.02	0.0	0.011
duration [s]	14.96	20.05	19.95	8.98	6.10	0.54
Equation of State	-	Shen*	DD2**	Shen*	Shen*	LS***

ICRC2023 Satellite Workshop Chiba U.

Realtime angular resolution with other models

 Reference
 [1] Totani, T., et al. ApJ 496.1 (1998): 216

 [2] Nakazato, K., et al. ApJS 205.1 (2013): 2

 [3] Mori, M., et al. PTEP 2021.2 (2021): 023E01

 [4] Hüdepohl, L., et al. PhRvL 104.25 (2010): 251101

 [5] Fischer, T., et al. A&A 517 (2010): A80

 [6] Tamborra et al. PRD 90.4 (2014): 045032.

*Shen, et al. Nucl. Phys. A 637 (1998) 435–450.
Shen, et al. PTEP 100 (1998) 1013–1031.
**Mori et al., PTEP 2021 (2021) 023E01
***Lattimer & Swesty, Nucl. Phys. A 535 (1991) 331–376.