Prospects of KAGRA Observation in the Multi-messenger Era

Keiko Kokeyama

On behalf of the KAGRA collaboration

Mar 27, 2018

at ICEHAP, Chiba University

JGW-G1808116

Contents

- Introduction
- Detector upgrades and Near Future Observation Prospects – LIGO and VIRGO
- KAGRA Status
- KAGRA's contribution on upcoming Observations
- Future Prospects of the Field

Introduction

Gravitational wave astronomy has finally started 100 years after the Einstein prediction

- LIGO's detection
 - The first detection GW150914
 - 2 BH-BH in Observation 1 (O1)
 - 3 BH-BH in O2
- LIGO-VIRGO detection
 - BH-BH
 - NS-NS Multi-messenger Observation

figure: LIGO Lab

Gravitational-Waves

Overview of the Detectors

Test mass (mirror) hung by a large suspension to be isolated from seismic motions

The Gravitational Wave Spectrum

Figure: M Evans

Sensitivity Curve

Sensitivity during O2

Detectors with State-of-Art Technologies

Seismic Noise

Thermal Noise

IGW-G1R0811

_{3/27/18}Figures: H Yamamoto

Quantum Noise

Upgrades towards O3

LIGO

- Power up to 50W
- Squeezing input
 - 40% reduction of shot noise
- Optic swap
- Stray light control
- Vacuum System repair

Upgrades towards O3

LIGO

- Power up to 50W
- Squeezing input
 - 40% reduction of shot noise
- Optic swap
- Stray light control
- Vacuum System repair

Barsotti, LIGO-G1800598

Target 3dB Squeezing

Upgrades towards O3

VIRGO

- Monolithic suspension
- vacuum system upgrade & cleaning
- Laser High power amp (100W) installed
- squeezer being installed
- Newtonian noise subtraction

International Observation Network in the near Future

Underground and Cryogenic

KAGRA Status

Figures: KAGRA VIS & CRY team

★Wide Angle Baffle

Transmitting port detection bench

Detectors Status

Figures: KAGRA AOS team

Sensitivity Threshold for O3

- Tagoshi, JGW-G1808094

Considering various BNS range of KAGRA

Improvement for Source localization (preliminary)

- Tagoshi, JGW-G1808094

An example case study:

- BNS range (average observable distance with SNR=8):
 - o KAGRA: 10Mpc
 - o LIGO: 120Mpc
 - Virgo: 60Mpc
- Source:
 - BNS (1.4, 1.4) Msolar at 40Mpc
 - Uniform distribution for sky location, inclination, polarization
 - o 5000 realizations
- Method :
 - Fisher matrix, Simple TaylorF2 waveform

Improvement for Source localization (preliminary)

- Tagoshi, JGW-G1808094

Improvement for Source localization (preliminary)

- Tagoshi, JGW-G1808094

Sky Localization Accuracy

- Tagoshi, JGW-G1808094

Baysian parameter estimation simulation

Source:

BNS (1.4, 1.4) Msolar at 40Mpc

Inclination = 30 deg

BNS range of detectors:

LIGO: 120Mpc, Virgo: 60Mpc , KAGRA: 10Mpc

Detectors	HL	HLV	HLK	HVK	LVK	HLVK	
90% ΔΩ [deg²]	66.4	14.0	32.5	15.7	27.6	10.1	
Injected SNR 19.4 (H), 26.2 (L), 2.7 (V), 3.5 (K)							
Detectors	HL	HLV	HLK	Ηνк	LVK	HLVK	
90% ΔΩ [deg ²]	100	30.2	50.3	308.3	35.4	19.1	

Summary

- KAGRA will perform test operation with cryogenic Michelson configuration in April (phase-1)
- Upgrade to the Full-configuration Cryogenic Interferometer will follow
- KAGRA will try to join O3
- Evaluation of sensitivity threshold to join O3 has started among KAGRA Joint efforts with LIGO and Virgo are starting soon

We are working very hard to join the next LIGO and Virgo observation

- from Tagoshi, JGW-G1707454-v3

Future: With Full KAGRA Sensitivity

NS-NS@180Mpc (95%CI)

(1.4,1.4)Msun	LHV	LHVK	H:L V: '
median of $\delta\Omega$ [Deg ²]	30.25	9.5	K: : L

L:LIGO-Livingston H:LIGO-Hanford V: Virgo K: KAGRA I: LIGO-India

J.Veitch et al., PRD85, 104045 (2012) (Bayesian inference) See also Rodriguez et al. 1309.3273

direction, inclination, polarization angle are given randomly

BH-NS@200Mpc

(10,1.4)Msun	LHV	LHVK	LHV <mark>K</mark> I
median of $\delta\Omega$ [Deg ²]	21.5	8.44	4.86

Tagoshi, Mishra, Arun, Pai, PRD90, 024053 (2014), Fisher matrix

Further Future Outlook

Next Generation:

- LIGO Voyager (silicon cryogenic)

Future Ideas:

- Cosmic Explorer (US, 40km, cryogenic...etc)
- Einstein Telescope (EU, 10km) ... or identical detectors?

