Optical and NIR follow-up observations for transient objects with Hirosima 1.5-m telescope and tutorial `how to read the data' 広島大における突発天体の可視近赤外 追跡観測とそのデータの「読み方」

> Koji S. Kawabata (Hiroshima Univ) 川端 弘治 (広島大学)

Index

`Kanata' 1.5-m Optical Telescope
Strategy of Kanata Telescope

Multi-wavelength, Multi-mode

Representative Results

- Blazars and related objects
- Microquasars
- GRBs
- IceCube events
- New HinOTORI 0.5-m telescope
- Summary

`Kanata' 1.5-m Optical Telescope

Higashi-Hiroshima Observatory

Found in 2006; operated by Hiroshima University
Only 25 min by car from campus (503m above sea level)
~40% observable nights
Better seeing condition (median FWHM ~1.2 arcsec)
Sky brightness R=19-20 mag/arcsec² in dark nights

HIROSHIMA

ligashi Hiroshima Observatory

Higashi-Hiroshima Observatory: Aim

Multi-wavelength and/or Multi-band study for variable, transient objects

Gamma-ray, X-ray and Optical/NIR Observations

1.5m Optical/NIR telescope, Kanata (2006–) Gamma-ray satellite (Fermi 2008–) X-ray satellite (Suzaku 2005–, Hitomi 2016)

HIROSHIMA UNIVERSITY HE & Opt/NIR Obs. Astronomy group

HE (X-ray and gamma-ray) Astronomy Group

- Fukazawa, Yasushi (Prof)
- Mizuno, Tsunefumi (Assoc. Prof)
- Takahashi, Hiromitsu (Assist. Prof)
- Ohno, Masatoshi (Assist. Prof)

Optical and Near-Infrared Astronomy Group

– Kawabata, Koji (Assoc. Prof)

Moved out recent 12 months…

Telescope and Instruments

HIROSHIMA UNIVERSITY

Nasmyth focus#2

High Speed-readout spectrograph

FoV: 2.3' × 2.3' Wavelength res.: $R = \lambda/\Delta\lambda =$ 9-70(400-800nm), 150(430-690nm) ~30 frames/sec

Cassegra<mark>in focus</mark>

Nasmyth focus#1

HOWPol 2009- (KSK+ 2008) Opt Imaging: FoV 15'Φ Opt ImagPol: One-shot type Spec: R~400(400-1050nm) We-Do-Wo type Wollaston `One-shot polarimetry' is available --- Unique potential for quickly-variable object like GRB afterglows

`Kanata' Telescope

Successor of IR simulator of Subaru telescope
1.5mΦ main mirror

Azimuth rotation speed : 5° /sec,
2-4 times faster than normal 1-m size telescopes. (merit in high-response observation (e.g. GRBs)

HONIR : 2012- (Akitaya+ 2014 SPIE) 1 Optical band + 1 (future 2) NIR band (simultaneous) Opt+NIR Imaging: FoV 10' × 10' Opt+NIR Spec: R~400-500 Opt+NIR ImagPol/SpecPol Maximizing information by single observation One-shot polarimetry now available

Double Wollaston prism for HONIR (2016.7-)

- LiYF₄ crystal, covering 0.45–2.3 μ m
- Four polarization images are divided
 - \rightarrow One-shot Polarimetry avairable for both Opt/NIR chan.

Observational Targets with Kanata telescope 1

Observational Targets with Kanata telescope 2

Number of published papers

~80 papers with Kanata observation since 2007

Collaborating studies with Kanata telescope

FY 2006-2015: 105 studies (204 persons) in total

2014年度 共同研究 28件、35名

名古屋大1件1名(X線連星フレア)、米国UCSD1件1名(X線連星多波長観測)、東京大 4件4名(AGN多波長観測、近傍セイファート銀河観測、AGN分光モニター)、大阪大1 件1名(TeVガンマ線フレア)、ドイツMPI 2件2名(AGN多波長観測)、米国USRA 1件1 名(X線連星多波長)、英国サウサンプトン大1件1名、東工大1件2名(X線増光天体追 跡観測)、韓国ソウル大1件2名(彗星偏光観測)、埼玉大1件1名(YSO多波長観測)、 ブラジル・サンパウロ大1件1名(Be星偏光分光)、香川大 1件2名(星間雲偏光)、【継 続分】東京大1件2名(木曽超新星サーベイ追跡観測)、大学間連携キャンペーン観測8 件8名、ポーランド ジャギーロニアン大1件1名(AGN偏光)、東京大1件2名(大質量星 形成領域)、茨城大1件3名(Fermi未同定天体)

2015年度 共同研究 18件、33名

重力波対応天体捜索1件10名、韓国KASI 1件1名(活動銀河分光)、理研1件1名(ク エーサー多バンド偏光)、東北大2件4名(木星衛星食、惑星雲赤外閃光モニター)、兵 庫県立大1件1名(皆既月食偏光)、JAXA1件2名(金星の赤外偏光分光)、鹿児島大 1件1名(ミラ型候補星分光)、【継続分】東京大4件6名(木曽超新星サーベイ追跡観測、 AGN多波長観測、AGN分光モニター、大質量星形成領域)、大学間連携キャンペーン 観測4件4名、韓国ソウル大1件2名(彗星偏光観測)、ブラジル・サンパウロ大1件1名 (Be星偏光分光)

OISTER 光赤外大学間連携(2011-; 2017-)

Strategy of Kanata Telescope

Discrimination from other telescopes

Transient phenomena

 Requiring high response system and/or extended observations (being hard for large telescopes)

Multi-wavelength

- Coordinated with X/Gamma-ray observations supported by high-energy (and theoretical) people.
 Multi-mode
 - Simultaneous Opt/NIR observation including polarimetry and spectroscopy, maximizing information gaining from a single observation.

Multi-wavelength Observation Sample 1: Blazars and related objects

Blazars and related objects

Blazars: AGN seen from jet axis Beamed synchrotron radiation from jet dominates (thus bright)

SED of Blazars

Relativistic beaming; brightened by δ^4 10,000 times Emission from the jet dominates from radio through gamma-ray; rapid and large amplitude variability and strongly polarized light

Emission model of high energy part

Kanata Blazar Photo-Polarimetry Campaign

2008–2014: 42 (13 FSRQs, 8 LSPs, 9 ISPs, and 12 HSPs) +3 blazars have been monitored

Compared with gamma-ray with Fermi observation

Itoh et al. 2016; Ikejiri et al. 2011

Target Rl	azars										
raiget Diazais			TABLE 2								
		00070	LIST OF OUR TARGETS WITH MORE THAN 10 DATA POINTS.								
<u>PKS 0048</u>	<u>PKS 0754</u>	30279	Object Name	3FGL name	$\log(v_{\text{peak}})$	Type	z	N _{opt} .	N_{γ}		
S2 0109	1ES 0806	OQ 530	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
			S2 0109+22	3FGL J0112.1+2245	14.6	ISP	0.265	44	24		
<u>MisV1436</u>	<u>OJ 49</u>	<u>PKS 1502</u>	Mis V1436	3FGL J0136.9+4751	13.6	LSP (FSRQ)	0.859	52	18		
PKS 0215	0.1 287	PKS 1510	3C 66A AO 0235+164	3FGL J0222.6+4302 3FGL J0238 7±1637	15.1 13.5	LSP	0.444	462 72	164 26		
			PKS 0454-234	3FGL J0457.0-2325	13.1	LSP (FSRQ)	1.003	27	20		
<u>3C66A</u>	<u>S4 0954</u>	<u>PG 1553</u>	S5 0716+714	3FGL J0721.9+7120	14.6	ISP	0.3	556	198		
A C 0225	2EC 1052	Mrk 501	OJ 49	3FGL J0831.9+0429	13.5	LSP	0.1737	27	16		
<u>AU 0233</u>	<u>3LG 1032</u>	IVITA JUT	OJ 287	3FGL J0854.8+2005	13.4	LSP	0.306	174	75		
SO 0324	Mrk 421	H1722+11	Mrk 421	3FGL J1104.4 + 3812	16.6	HSP	0.031	85	46		
		<u></u>	ON 325	3FGL J1217.8+3006	15.5	HSP	0.13	38	17		
1ES 0323	RGB 1136	9	3C 273	3FGL J1229.1+0202	13.5	LSP (FSRQ)	0.15834	224	91		
DKC 0400	ON 225		3C 279	3FGL J1256.1-0547	12.6	LSP (FSRQ)	0.5362	140	72		
PK3 0422	<u>UN 325</u>	<u>PK3 1749</u>	PKS 1502+106	3FGL J1504.3+1029	13.6	LSP (FSRQ)	1.839	71	27		
020	ON 231	S5 1803	PK5 1510-089	3FGL J1512.8-0906 2ECL 11542.0+6120	13.1	LSP(FSRQ)	0.36	60	51		
			PC 1552+112	$3FGL$ 11555 7 \pm 1111	14.1	LSP (PSNQ) HSP	0.117	106	30 90		
<u>0454Q</u>	<u>3C 2/3</u>	<u>3C3/1</u>	Mrk 501	3FGL J1653.9+3945	17.1	HSP	0.033663	170	80		
1ES 0647	0501239	1FS 1959	PKS 1749+096	3FGL J1751.5+0938	13.1	LSP (FSRQ)	0.322	47	16		
120 0047	<u>QOUI200</u>	120 1303	3C 371	3FGL J1806.7+6948	14.7	ISP (FSRQ)	0.051	21	16		
S5 0716	1ES 2344	PKS 2155	$1 \text{ES} \ 1959 + 650$	3FGL J2000.0+6509	16.6	ISP	0.047	82	42		
	<u> </u>	00454.0	PKS 2155-304	3FGL J2158.8-3013	16.0	HSP	0.116	146	60		
<u>BL Lac</u>		30454.3	BL Lac	3FGL J2202.8+4216	13.6	LSP	0.0686	340	137		
			CTA 102	3FGL J2232.4+1143	13.6	LSP (FSRQ)	1.07	76	33		
			3C 454.3	3FGL J2253.9+1609	13.6	LSP (FSRQ)	0.859	442	143		

Flux-color correlation

Ikejiri et al. 2011

`Bluer when brighter' trend in the whole data (72%) **Bluer when brighter' in brighter phase (16%)** (In faint phase, hot disk component is dominant)

Flux-polarization correlation

45%

Ikejiri et al. 2011

Rotation of Linear Polarization Angle

Multi-wavelength study in 3C 279

MW Light Curve and Opt. Polarization

Correlation between gamma-ray and optical light

TABLE 4 SUMMARY OF CORRELATION TIME LAGS BETWEEN GAMMA-RAY FLUX AND OPTICAL FLUX

Source Name	time lag (days)	DCF peak value
AO 0235+164	0 + 4 - 14	0.67 ± 0.08
S5 0716 + 714	0 ± 7	0.47 ± 0.05
OJ 287	$-134 \begin{array}{c} +4 \\ -28 \end{array}$	1.0 ± 0.5
3C 273	$-145 \begin{array}{c} +7 \\ -21 \end{array}$	-0.97 ± 0.18
3C 279	-28 ± 14	0.67 ± 0.15
3C 279	$77 \ ^{+7}_{-14}$	-0.6 ± 0.1
PG 1553+113	$21 \ ^{+14}_{-28}$	0.4 ± 0.1
PKS 2155-304	$-28 + \overline{28} - 7$	0.9 ± 0.2
BL Lac	0^{+28}_{-77}	1.0 ± 0.1
CTA 102	0 ± 7	0.8 ± 0.2
3C 454.3	0^{+49}_{-49}	0.84 ± 0.13

Itoh et al. 2016

Alignment of magnetic field depends on blazar type

Active phase monitoring in CTA 102

FSRQ (z = 1.037)

Flare observed on 19 Sep 2012 Optical report (ATel #4397) 21 Sep 2012 GeV report (ATel #4409)

Started dense monitoring with Kanata + OISTER

Two types of violent variation in optical polarization observed.

Multi-wavelength Observation Sample 2: X-ray binary/microquasar

X-ray binary

XTE J1118+480; Markoff et al (2001)

- It has been claimed that NIR light is produced by jet. (Most X-ray binaries locate near the milky way, and the optical light is heavily absorbed, but NIR light is much less absorbed.)
- Thus, jet can be probed by NIR observation (as well as X-ray and radio observations)

Outburst of blackhole binary V404 Cyg

Conceptual SED and polarization vs frequency for X-ray binary in active phase

光学的に薄い

Flux %Polarization

Shahbaz+(2008)

V404 Cyg in outburst phase (Kanata/HONIR, Pirka; Tanaka+ 2016)

Kバンド付近で数十%もの大きな偏光 が期待される(かも)

Microquasar GRS 1915+015

- Superluminal motion in radio (VLBI)
 - \rightarrow High-velocity jet \rightarrow Called as microquasar
- BH mass $14 \pm 4 \text{ M}_{\odot}$ from NIR spectroscopic period (Greiner et al. 2001)
- A time-sequential flare among X-ray, NIR and radio wavelengths is found, explained by disk-jet model (Mirabel et al. 1998)
- But, the observational material for accretion and jet physics is still poor.

GRS 1915+015: NIR and X-ray monitoring

NIR photometric monitoring. X-ray hardness ratio suggests this binary is in soft state at MJD 54320-54570. Around MJD 54370, X-ray and radio flare appeared \rightarrow jet ejection In contrast, NIR flux decreased. (Time lag < 1d)

This NIR – X/radio anti-correlation continued during its soft state (250 d).

GRS 1915+015: NIR polarimetry

Multi-wavelength Observation Sample 3: Gamma-ray bursts and their afterglows, Optical counterpart of GW events

Afterglow of GRBs

A considerable fraction of GRBs (~30%) show afterglows in optical wavelengths. They are explained by synchrotron radiation originated in an external shock region where the relativistic jet interacts with circumstellar matter.

080413B Filgas+ 2011

Expected geometry of magnetism and polarization

- 1. Totally random orientation of magnetism. \rightarrow Null polarization
- 2. Combination of coherent patches (scale length ~ c ∠). Within each patch, the magnetic field is ordered. Normal jet may have ~50 patches.
 → Constant polarization of ~10% (=70%/√N) (e.g., Gruzinov & Waxman 1999)
- 3. Axi-symmetric polarization pattern due to compressed, tangled magnetic field, coupled with relativistic `beaming' and `occultation' of emitting region.
 - → Variable polarization of p=0-10% from oblique line of sight (e.g, Sari+ 1999; Rossi+ 2004)
- 4. Large scale ordered-magnetic field in (not hydrodynamic jet, but) Poynting-flux dominated jet (e.g, Lyutikov+ 2003)
 - \rightarrow Large polarization (up to ~50%)

HIROSHIMA UNIVERSITY

List of Kanata optical polarimetry for GRBs

	GRB trigger t1	GCN receive t2	Expos. start t3	t3-t1 (s)	t3-t2 (s)	Polarized?
GRB 091208B	9:49:58	9:50:24	9:52:27	149	123	Yes
GRB 111228A	15:44:43	15:45:33	15:47:25	162	112	Yes
GRB 121011A	11:15:30	11:16:09	11:17:02	92	53	Νο
GRB 130427A	7:47:57	7:49:15	11:40:26	14027	13949	Νο
GRB 130505A	8:22:28	8:22:51	10:46:08	8643	8620	Νο
GRB 140629A	14:17:30	14:17:46	14:18:43	73	57	Νο

We have the record of earliest observation (< 100s after gamma-ray trigger) for GRB afterglow in polarimetry (091208B, 121011A, 140629A).

GRB 111228A (z=0.714)

Takaki, Toma, KK+, submitted

Optical afterglow shows significant temporal polarization change. GRB 111228A: Strongly polarized

Katsutoshi Takaki will give a talk on the study of this GRB afterglow on third day of this GRB conference.

GRB 140629A (z=2.3)

 $T_{90} (15-350 {\rm keV}) = 75.6 \pm 12.7 {
m sec}$ Galactic $A_V = 0.022$; upper-limit $p_{MW} \sim 0.07\%$

Polarimetry began at $T_0 + 73$ s (22 s in rest frame) The record of earliest polarimetry ever!

 $p = 1.8 \pm 1.1$ % at T_0 +73 s to 185 s $p = 1.5 \pm 1.8$ % at T_0 +198 s to 436 s $p = 2.8 \pm 6.4$ % at T_0 +7456 s to 8618 s

<u>GRB 140629A: Unpolarized (or only</u> <u>weakly polarized)</u>

Other early afterglow polarimetry

Mundell+ (2013), Nature

Earliest afterglow is generally strongly polarized?

Other early afterglow polarimetry w/ HOWPol data

Mundell+ (2013), Nature

No.

Earliest afterglow is generally strongly polarized?

Multi-wavelength Observation Sample 4: Neutrino sources

Searching counterparts for IceCube events

Tiling observation covering error circle

 Targeted observation for blazars within error circle

IceCube-161210A

Alert: 2016-12-10 20:07(UT)

ID	1	2	3	4	5	6	7	8
積分時間 [sec]	300	300	300	300	300	900	1200	300
5sigma 限界等級 [AB mag]	19.29	19.39	19.27	18.64	18.58	18.07	18.50	18.32
変動天体 (目視)	なし							
ID	9	10	11	12	13	14	15	16
積分時間 [sec]	300	900	1020	300	300	300	300	300
5sigma 限界等級 [AB mag]	18.97	19.02	18.54	19.21	19.20	18.82	18.77	19.12
変動天体 (目視)	なし							

森修論(2018)

2016-12-11 9:30-17:30 (UT) J-band imaging (tiling)

IceCube-170321A

BROS blazar catalog (Tanaka, Itoh, Inoue, et al.) >5000 from TGSS, PanSTARRS

Alert: 2017-03-21 07:32(UT)

2017-03-22 10:30-11:10 (UT) J-band imaging

	ID-天体名	1-J063459	2-J063120	3-J063120
PanSTA	RRS,r バンド等級 [AB mag]	20.33	20.33 20.01	
2MAS	SS,J バンド等級 [AB mag]	No data	No data No d	
	RA[deg]	98.7463	97.8343	97.7285
	$\mathrm{DEC}[\mathrm{deg}]$	-14.5301	-14.1757	-16.0434
HONIR	R バンド積分時間 [sec]	375	375	375
	R バンド限界等級 [AB mag]	19.27	19.17	19.15
	J バンド積分時間 [sec]	300	300	300
	J バンド限界等級 [AB mag]	18.14	17.95	17.91
	観測結果	未検出	未検出	未検出

IceCube-170922A

Alert: 2017-09-22 20:54(UT)

2017-09-23 16:10-20:20 (UT) J-band imaging

IceCube-170922A: Light curve

Imcomplete flat-fielding, errors in used catalogue, instability due to observing condition, intra-night variability, etc.

IceCube-170922A: Polarization

Polarization map of nearby stars

HIROSHIMA UNIVERSITY

Multi-wavelength Observation Sample 5: GW events

HIROSHIMA UNIVERSITY 重力波天体 同定観測ネットワーク J-GEM PI 吉田道利(広島大) J-GEMに参加して いる望遠鏡群 (諸隈ほか2017) December 26 2015 September 14 2015 Ejecta-ISM Shock Radio (years) θ_{obs}

5距離100MpcでのGWイベントの光度曲線モデル (田中雅臣2017)

NS-NS(BH)合体

02ラン進行中(~2017夏)

2017.08.18-19 2017.08.24-25

51

Subaru HSC $\lambda 0.9 \,\mu$ m, IRSF1.2 μ m, 2.2 μ m composite color image

J-GEM obs. of the counterpart of GW 170817: SSS17a

Decayed and reddened quickly Utsumi et al. 2017;

> Tanaka et al. 2017; Tominaga et al. 2017;

Hiroshima Kanata 1.5m HONIR 1.6 μ m 2017.08.20 19.11JST (17min after sunset, $h\sim$ 10deg)

Nakaoka et al. 2017; Utsumi et al. 2017

Severe to photometry from Japan

HinOTORI 0.5m telescope in Tibet, China

HinOTORI 0.5m tel.@5100m

HIROSHIMA UNIVERSITY

Summary

54

Kanata 1.5m telescope

- Dedicated for transient objects/phenomana
- Simultaneous optical and NIR observation (imaging, spectroscopy, polarimetry)
- Supernova, Blazars, GRBs, IceCube events, GW events,...
- Be careful to reliability for errors (depending on observer/reduction tool, etc.) – easily changing by 0.1–0.2 mag

HinOTORI 0.5m telescope

- Construction finished in 2017 Oct
- Proper observation will begin in late 2018 or 2019

Collaborating study with Kanata is always welcome! Opt imaging $\leq 21 \text{ mag}$, NIR imaging $\leq 17-19 \text{ mag}$ 10' x10' (HONIR) low-res. spectroscopy, polarimetry HinOTORI 0.5m in Tibet will be available soon.