Recipes for the statistical properties of Fast Radio Bursts

Yuu NIINO (NAOJ) based on arXiv:1801.06578, accepted by ApJ

Fast Radio Bursts

- Transient events in radio bands (~ 1 GHz) with a few milli-sec durations.
- First discovered in 2007 by Lorimer et al.
- Currently ~ 30 events are known.
 - ~ 20 discovered by the Parkes radio telescope

Caption: CSIRO's Parkes radio telescope. Credit: David McClenaghan, CSIRO

Thornton et al. (2013)

Dispersion measures of FRBs

- The dispersion measures
 (DMs) exceed the expected
 MW contribution.
 - DM
 - = delay of pulse arrival time as a function of v
 - = free electron column density along the line of sight
- If the DMs arise from the IGM,
 FRBs reside at z ~ 0.3-1.5.
 - FRBs may enable us to observed the IGM.

Location and flux of FRBs

- The Parkes multi-beam receiver has 13 beams.
 - The only information about the location is the beam pointing.
 - ~ 14 arcmin in FWHM
- Efficiency of a radio receiver varies within it's beam.
 - Position of an FRB within the beam is not known.
 - Lower limits only.
- Exception
 - FRB 121102: the repeating FRB detected by Arecibo

DM distribution of cosmological FRBs

Cosmic FRB history and the DM distribution

- If FRBs originate at cosmological distances, DM distribution ~ redshift distribution.
 - important clue to the cosmic FRB rate history.
 - In the cases:
 - $\rho_{FRB} \propto SFR$
 - $\rho_{FRB} \propto M_{\bigstar}$
 - The DM distribution is similar below DM ~ 1000 (or z ~ 1).
 - Dramatically different beyond that.

FRB luminosity function and beam efficiency pattern

- The DM distribution depends also on the luminosity function (LF) of FRBs
- Receiver efficiency follows a certain probability distribution function (PDF).
- FRB LF is effectively convolved with the receiver efficiency PDF.
 - $F_{v,app} \equiv \epsilon_{beam} F_v$
 - $L_{v,app} \equiv 4\pi d_L^2 F_{v,app} = 4\epsilon_{beam}\pi d_L^2 F_v$
- detection limit: $F_{v,app} > 0.4 [Jy]$

ρ_{FRB}, FRB LF, & DM distribution

DM distribution of Cosmological FRBs

- LF and ρ_{FRB} are largely degenerated.
- LF2 (power-law) can not reproduce the DM distribution if $\rho_{FRB} \propto SFR$.
 - LF needs bright-end cutoff around logL_{v,0} [erg s⁻¹Hz⁻¹] ~ 34.

Cosmological or Local

Are FRBs cosmological or local?

- DM from the IGM
- ~ 1000 × z [cm⁻³pc]
 DM do not necessarily arise
 - solely from the IGM
 - host galaxy ISM
 - supernova remnant
 - Hll region
- If the IGM is not the dominant DM component, FRBs might be at lower redshifts.

The logN-logS distribution

- The power-law slope = -1.5 in the Euclidean space (e.g., local universe).
- Cosmological effects modify the slope.
- The fluence distribution is flatter than the Euclidean (Vedantham et al. 2016).
 - affected by the incompleteness
 - steeper in the bright-end
 - completeness limit ~ 2 [Jy ms]
 - ~ 50% of the sample
- The S/N distribution agrees with the Euclidean.

The logN-logS distribution

- S_v distribution
 - When $\rho_{FRB} \propto SFR$:
 - consistent with the Euclidean & obs.
 - When $\rho_{FRB} \propto M_{\bigstar}$:
 - flatter than observed
 - close to the limit by the CHIME pathfinder (Amiri et al. 2017)
- F_v distribution: steeper than the S_v distribution & the Euclidean

Flux, Fluence, and S/N

- The faint end of the F_v distribution is affected by a complicated incompleteness.
 - The S_v distribution is sharply cut.
- S/N of FRB detections is determined by S_{ν} rather than $F_{\nu}.$
- Better constraint might be obtained by using S_{ν} instead of $F_{\nu}.$

DM-flux correlation

- The S_v distribution of cosmological FRBs is similar to the Euclidean when $\rho_{FRB} \propto SFR$.
- The correlation between DM and S_{ν} is a clue.
 - potentially provides better constraint than the logN-logS distributions.

K-correction

LF1

- Constant L_v as a function of v is assumed in the discussion above.
 - SED of FRBs is largely degenerated with **P**FRB.
- Observations in different frequency band are essential.

Summary

- The large DMs of FRBs suggest they are at cosmological distances.
- Even the single messenger studies can constrain the nature of FRBs.
 - FRBs look really interesting.
- Many of the current limitations are peculiar to (single dish) radio telescopes.
 - Discovery of other messengers will revolutionize our understanding of FRBs.
- The Alerts will be public since April 2018.