Difficulties of Star-forming Galaxies as the Source of IceCube Neutrinos

Takahiro Sudoh (Univ. of Tokyo)

Tomonori Totani (UTokyo), Norita Kawanaka (Kyoto Univ.)

accepted for publication in PASJ マルチメッセンジャー天文学研究会@千葉大学 26 March 2018

- A new model of gamma-ray and neutrino from a starforming galaxy from SFR, Mstar, Mgas, radius
- This model well reproduces gamma-ray luminosities of nearby galaxies detected by Fermi
- This model is combined with a cosmological galaxy formation model to predict background radiation
- Majority of the IceCube neutrinos cannot be explained by star-forming galaxies

Introduction

IceCube neutrinos from star-forming galaxies

- · Star-forming galaxies emit neutrinos via pion decay
- Many previous studies (Loeb & Waxman 06, Thompson+06, Stecker 07, Lacki+11, Murase+13, He+13, Tamborra+14, Anchordoqui+14, Liu+14, Emig+15, Chang+15, Giacinti+15, Senno+15, Maharani & Razzaque 16, Chakrabortty & Izaguirre 16, Xiao+16, Bechtol+17)
 - lack of consensus (less than 10% ? more than 50% ?)
 - mainly rely on empirical relations
 - · argument sensitive to assumed spectral index

GeV gamma-rays from star-forming galaxies

- · Star-forming galaxies emit gamma-rays via pion decay
- Many previous studies (Strong+76, LichtiL78, Dar & Shaviv 95, Pavlidou & Fields 02, Thompson+07, Ando & Pavlidou 09, Fields+10, Makiya+11, Stecker & Venters 11, Ackermann+12, Chakraborty & Fields 13, Lacki+14, Lamastra+17)
 - 4-23% of Isotropic Gamma-ray Background (estimate by Fermi team)
 - mainly rely on empirical relations, which may introduce significant bias (Komis+17)

High-energy emissions from star-forming galaxies

- What we need for better prediction is…
 - Physically-motivated model of gamma-ray & neutrino emission from a star-forming galaxy
 - · Gamma-ray constraints from nearby galaxies
 - Cosmological evolution of galactic properties such as SFR, mass, size from realistic galaxy formation theory.
- How much contribution galaxies can make to diffuse gamma-ray (Fermi unresolved) and neutrino (IceCube) background ?

Modelling Gamma-ray and Neutrino Emission from Galaxies

Modelling gamma-ray and neutrino from a galaxy

- · Input : SFR, Mgas, Mstar, Reff, H (\propto Reff)
- · CR production rate : SFR
- · CR spectrum at injection : $rac{dN}{dtdE} = C imes ext{SFR} imes E^{-\Gamma_{ ext{inj}}}$
- pp interaction rate : target ISM gas density (M_{gas}, R_{eff}, H)
 escape time from galaxy : advection or diffusion
 - · outflow velocity (σ) : escape velocity from galactic disk
 - \cdot diffusion coefficient : from Larmor radius (R_L) and fluctuation pattern of turbulent magnetic field
 - magnetic field : equipartition with energy injected by SNe

Cosmic ray diffusion in galaxy

•

Diffusion coefficient : from Larmor radius and fluctuation pattern of turbulent magnetic field

$$D(E_p) = \begin{cases} \frac{cl_0}{3} \left[\left(\frac{R_L}{l_0} \right)^{\frac{1}{3}} + \left(\frac{R_L}{l_0} \right)^2 \right] & \left(R_L \le \sqrt{H_g l_0} \right) \\ \frac{cH_g}{3} & \left(R_L > \sqrt{H_g l_0} \right) \end{cases}$$

- Kolmogorov-type turbulence is assumed
- Coherent length Io : set to 30 pc from MW observation

Estimate of magnetic field in galaxy

magnetic field : equipartition with energy density injected by supernovae

- Salpeter IMF assumed
- $\cdot \eta = 0.03$ to reproduce B = 6 μ G in the Milky Way

Modelling gamma-ray and neutrino from a galaxy

- · Input : SFR, Mgas, Mstar, Reff, H (\propto Reff)
- · CR production rate : SFR
- · CR spectrum at injection : $rac{dN}{dtdE} = C imes ext{SFR} imes E^{-\Gamma_{ ext{inj}}}$
- pp interaction rate : target ISM gas density (M_{gas}, R_{eff}, H)
 escape time from galaxy : advection or diffusion
 - · outflow velocity (σ) : escape velocity from galactic disk
 - \cdot diffusion coefficient : from Larmor radius (R_L) and fluctuation pattern of turbulent magnetic field
 - magnetic field : equipartition with energy injected by SNe

Calibration of model

Objects	L_{γ}	ψ	$M_{\rm gas}$	M_{*}	$\kappa_{ m eff}$
	10 ³⁹ erg s ⁻¹	$[M_{\odot} \text{ yr}^{-1}]$	¹] [10 ⁹ M_{\odot}	$][10^9 M_{\odot}]$] [kpc
MW	$0.82{\pm}0.24$	2.6	4.9	50	6.0
LMC	$0.047 {\pm} 0.00$	0.24	0.53	1.5	2.2
SMC	0.011 ± 0.00	0.037	0.45	0.46	0.7
NGC253	6±2	7.9	4.3	21	3.7
M82	15±3	16.3	1.3	8.7^{\dagger}	1.2
NGC2146	40-1-21	17.5‡	4 1	20	10

- Nearby galaxies detected in gammaray
- Note: NGC4935, NGC1068, Arp220 and M31 are not used in this work

Fix the free parameter C $Model prediction L_r(C)$ $\frac{dN}{dtdE} = C imes SFR imes E^{-\Gamma_{inj}}$

The value of C is converted to ECR ~ 0.2 ESN

Comparison with data of nearby galaxies

Model agrees data well (better than simple powar-laws)

Only one free parameter is included in the model

Modelling gamma-ray and neutrino from a galaxy

- Now we can calculate gamma-ray & neutrino spectrum from a galaxy using SFR, Mstar, Mgas, Reff
- Combine this model with cosmological galaxy formation model to predict background radiation
- \cdot Before that, we constrain Γ inj from emission from the Galactic disk

Emission from Galactic Disk

Emissions from the Milky Way disk

Observation: MW disk is not dominant (no anisotropy)

Finj <~ 2.2 or cutoff below E~10^14 eV is necessary

Cosmological Background Radiation

Semi-analytic galaxy formation model

Cosmological parameter

Semi-analytic galaxy formation model

- · Mitaka model (Nagashima & Yoshii 2004)
- reproduce observations of local and high-z galaxies (luminosity functions, luminosity-density, etc.)
- starburst occurs at galaxy merger (5% contribution to CSFRD at z=0)

Gamma-ray background

- including cascade emission
- Star-forming galaxies make about 20% contribution to isotropic gamma-ray background (0.1-100 GeV)
 - consistent with estimate by Fermi-LAT (4-23%, Ackermann+12)

Neutrino background

- Starburst galaxies dominate at TeV-PeV
- only 0.5% for $\Gamma inj = 2.3$
- 22% even if Γ inj = 2.0
 (extremely optimistic)
- majority of IceCube data cannot be explained by starforming galaxies

- A new model of gamma-ray and neutrino from SFG from four physical quantities: SFR, Mstar, Mgas, Reff
- · This model well reproduces L_{γ} of nearby galaxies & can be tested by future TeV observation (CTA!)
- This model is combined with a cosmological galaxy formation model to predict background radiation
- SFGs make ~20% of isotropic γ -ray background and 22% of the IceCube flux for most optimistic case (Γ inj = 2.0) based on gamma-ray constraints of nearby galaxies