Multi-Messenger Astronomy with Swift

T. Sakamoto (AGU) (Special thanks for Phil Evans)

Contents

Introduction of Swift Gravitational-wave (GW) electromagnetic (EM) counterpart search - Short GRBs - Swift GW EM counterpart search strategy during O2 - GW170817 High-energy neutrino EM counterpart search during 2017

2004-

Multi-messenger Astro 2018 @ ChibaU

The Neil Gehrels Swift Observatory

The Swift Gamma-Ray Burst Explorer has officially been renamed the Neil Gehrels Swift Observatory

Neil Gehrels (1952-2017)

Brad Cenko: Swift PI

Multi-messenger Astro 2018 @ ChibaU

Burst Alert Telescope (BAT)

E_range: 15-150 keV (15-350 keV) Det: CdZnTe (4 x 4 x 2 mm³) # of detectors: 32,768 (256 x 128) FOV: <u>120 deg x 90 deg</u> Pos: 1'-3'

UV/Optical Telescope (UVOT)

Aperture: 30 cm (XMM OM) Det: MCP+CCD (XMM OM) FOV: 17' x 17' 7 filters (UV - Opt)+2 grism

E_range: 0.3-10 keV Focal Length: 3.5m Det: X-ray CCD (XMM MOS) FOV: 23' x 23'

X-Ray Telescope (XRT)

Why Swift for ToO Observations?

Chandra call for proposals handbook (page 37)

6.1 Transient Science (DDT Targets of Opportunity)

DDT proposals may be submitted at any time for transient phenomena such as supernovae, gamma ray bursts or accreting binaries. Proposers must demonstrate why the science return from the proposed observation is important and cannot be submitted to the peer review during the next cycle. Proposers should also note that TOO programs approved by the peer review take priority over DDT requests if the object in question fulfills the trigger criteria of a pre-approved TOO (Section 4.3) The long orbit and broad sky coverage of *Chandra* offer considerable flexibility in the treatment of TOOs. The minimum expected response time for a TOO is approximately 24 hours. The total number of TOOs performed is limited by operational and manpower constraints.

Given the limited availability and high operational impact of TOOs, proposers are asked to carefully consider whether *Chandra* is the optimal observatory for their particular target(s) and to justify this choice in their proposal. Other X-ray missions, e.g., SWIFT, are more flexible for performing TOO observations on medium/bright targets. <u>SWIFT</u> TOO application information either pre-approved (by peer review) or unanticipated, can be found on the SWIFT website at: <u>http://www.swift.psu.edu/too.html</u>.

Always Fast ToO

Automatic Tiling Observation

Automatic tiling observation capability (Part of the BAT on-board software)

- Try to observe all N tiles in the first orbit
- Continue observing until the requested observing time (min exp/tile = 60 s)

Gravitational-wave (GW) Electromagnetic (EM) Counterpart Search

Short GRBs

Multi-messenger Astro 2018 @ ChibaU

Light curves of GRBs

HETE-2/FREGATE

Prompt emission properties of Short GRBs

GRB 060313 (typical short GRB)

GRB 061006 (short GRB with E.E.)

- With/without extended emission (E.E.) (Norris & Bonnell 2006)
- No spectral lag (Norris et al. 2001)
- Low fluence and high E_{peak} (Outlier of E_{peak} - E_{iso} relation) (Amati 2006)
- No soft short GRBs (Kouveliotou 1993, Sakamoto 2006)

Long-lasting X-ray Emission in s-GRBs

Two distinct components in X-ray light curves

(Kisaka, Ioka, Sakamoto 2017)

- About a half of s-GRBs has both EE and PE components

- Universal X-ray emission characteristics of s-GRBs?

Multi-messenger Astro 2018 @ ChibaU

S-GRB hosts and "kilonova" emission?

- Mixed (early-type/late-type) host galaxies GRB 050509B (Gehrels et al. 2005)

S-GRB host galaxy population (Berger 2014) GRB 130603B (Tanvir et al. 2013) 'kilonova' association: Indication of NS-NS/NS-BH merger

3/26/18

Multi-messenger Astro 2018 @ ChibaU

S-GRBs: NS-NS/NS-BH Merger Model

Eichler et al. 1989; Narayan, Paczynski & Piran 1992

(http://swift.sonoma.edu/resources/multimedia/animations/)

1. NS binary system

2. Getting close due to the energy loss by gravitational-wave

4. Merged

5. Remnant is BH with a disk

6. Lunch a GRB jet

3/26/18

Multi-messenger Astro 2018 @ ChibaU

Swift O2-run Observing Strategy

Co-detection of a short GRB with BAT and the GW signal from LIGO-Virgo (best case!)

– 0.02-0.14 events per year (Wanderman & Piran 2015)

Swift NFIs follow-up criteria

 Unmodelled triggers: FAR < 1/6 months and P400 > 0.2 (P400: the amount of convolved probability covered by the top 400 Swift pointings)

- CBC triggers: 1) "ContainsNS" > 0.25 or 2) "ContainNS" < 0.25 and P400 > 0.5

If EM counterpart detected by other facilities, Swift will do follow-up

GW 170817

Gravitational-wave event from BNS merger!

Abbott et al. 2017

Multi-messenger Astro 2018 @ ChibaU

Association of GW 170817 and GRB 170817A

GW 170817/GRB 170817A (Abbott et al. 2017) GRB 170817A (Goldstein et al. 2017)

3/26/18

Multi-messenger Astro 2018 @ ChibaU

Fermi-GBM spectrum of GRB 170817A

(Goldstein et al. 2017)

Times: -0.320: 0.256

BGO 00 +

NAI_01 0 NAI_02 □ NAI_05 ◊

1000

Times: 0.848: 1.936 s

BGO_00 + NAI_01 ○ NAI_02 □

NAI 05 📀

20 SWIJI

GRB 170817: Fermi-GBM light curve

GRB 170817 50 ms Light curve of INTEGRAL/SPI-ACS and Fermi/GBM

mS Counts/50

GW 170817: BAT Observation

1.6 s light curves

Nothing in the BAT light curve at T₀(GW)
GW 170817 error region was occulted by the Earth

senger Astro 2018 @ ChibaU

(Evans et al. 2017)

Insight-HXMT: GRB 170817 Observation (Li et al. 2017)

Swift Follow-up Observations

(Evans et al. 2017)

- 1. T_0+1 hr: 37 tiling at the center of the Fermi-GBM position
- 2. T_0 +4.6 hr: (LIGO single sky map + GWGC) & Fermi-GBM location
- 3. T_0 +7.4 hr: LIGO/Virgo three detector sky map + GWGC
- 4. T_0 +14.4 hr: Follow-up on EM 170817
 - UVOT detections in all filters, but no XRT detection

UVOT works!

(Evans et al. 2017)

Rapidly fading UV emissions were detected by UVOT

Clear detection of kilonova in UV

stro 2018 @ ChibaU

Chandra detection of X-rays from SSS17a

(Troja et al. 2017)

Off-axis GRB Afterglow?

(Troja et al. 2017)

Jet opening angle: $\theta_j = 15 \text{ deg}$ Viewing angle: $\theta_v = 28 \text{ deg}$

Consistent with late-time rise in both X-ray and radio

Standard uniform jet: Prompt GRB emission should be fainter than GRB 170817A

Gaussian jet: Consistent with the data

Multi-messenger Astro 2018 @ ChibaU

Swift/XRT Follow-up Observations of SSS17a

- 2017/8/18 2017/9/1
- 2017/9/12
- 2017/12/1 2018/1/4

Total exposure: 305 ks

3/26/18

Multi-messenger Astro 2018 @ ChibaU

Chandra Further Observations

(Only archived data)

SSS17a: Chandra X-ray Light curve

SSS17a: Chandra X-ray Light curve

Hardness of SSS17a

Summary

GW 170817

- Swift observation
 - BAT: Occulted by the earth at $T_0(GW)$
 - UVOT: Detection of kilonova emission
 - XRT: None detection of X-ray emission (Hint of an off-axis GRB)
 - Chandra observation
 - Late time rise (T₀+9 days) in X-rays
 - Further Chandra observation is needed to see a decay in X-ray flux

High Energy Neutrino EM Counterpart Search

Multi-messenger Astro 2018 @ ChibaU

GRBs as the sources for UHECR?

(Aartsen+ 2017, astro-ph/1702.06868)

$$p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \rightarrow n + e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$

IceCube: 508 GRBs (Northern Hemisphere), 664 GRBs (Southern Hemisphere)

Multi-messenger Astro 2018 @ ChibaU

Real time IceCube Alerts on 2017

Trigger Time	Туре	Position	Error (50% radius)	XRT follow- up	BAT FOV?
2017-03-12 13:49:39.83	HESE	(304.730, -26.238)	25.19'	$T_0 + 2.0 \text{ hr}$ ($T_0 + 15.2 \text{ hr}$)	T ₀ + 0.7 hr
2017-03-21 07:32:20.67	EHE	(98.326, -14.486)	19.48'	$T_0 + 6.6 hr$ (T ₀ +7.2 hr)	T ₀ + 6.6 min
2017-05-06 12:36:55.80	HESE	(221.675, -26.036)	25.19'	No	T ₀
2017-09-22 20:54:30.43	EHE	(77.285, +5.752)	14.99'	$T_0 + 3.3 hr$ ($T_0 + 1.1 day$)	$T_0 + 25.6 s$
2017-10-15 01:34:30.06	HESE	(162.579, -15.861)	25.19'	No	T ₀ + 2.9 hr
2017-10-28 08:28:14.81	HESE	(275.076, +34.501)	96.00'	No	T ₀ + 2.1 hr
2017-11-06 18:39:39.21	EHE	(340.250, +7.314)	14.99'	T_0 + 3.2 hr (T_0 +17.2 hr)	T ₀ - 9.7 min
3/26/18		Multi-messenger A	stro 2018 @ ChibaU		37 Swift

IceCube-170312A

XRT (T_0 +7.3 ks - T_0 +54.9 ks; 19 tiling)

20:23:05.607 -25:18:26.76 (FK5) 10.091 2864.636 (physical)

(Keivani et al. 2017, GCN circ. 20890)

Five X-ray sources are detected including one known X-ray source. Four un-cataloged sources are well below the ROSAT All Sky Survey limit.

No new X-ray source (>3 sigma): 2.9 x 10⁻¹³ erg/cm²/s (0.3-10 keV) $(N_{\rm H} = 3 \times 10^{20} \text{ cm}^{-2}; \Gamma=1.7)$

IceCube-170321A

Multi-messenger Ast

BAT 14-195 keV sky image (T_0 +578 s - T_0 +1643 s)

5-sigma UL (14-195 keV; Γ=2) : 6.1 x 10⁻⁹ erg/cm²/s (@1065 s)

XRT (Keivani et al. GCN circ. 20964) (T_0 +23.7 ks - T_0 +37.8 ks; 7 tiling)

No new X-ray source (>3 sigma): 1.48 x 10⁻¹³ erg/cm²/s (0.3-10 keV) $(N_{\rm H} = 3 \times 10^{20} \text{ cm}^{-2}; \Gamma=1.7)$

3/26/18

IceCube-170506A

BAT 14-195 keV sky image $(T_0+5 \text{ s} - T_0+228 \text{ s})$

5-sigma UL (14-195 keV; Γ=2) : 3.7 x 10⁻⁸ erg/cm²/s (@ 223 s)

BAT 64 ms raw light curve

3/26/18

IceCube-170922A

XRT (Keivani et al., GCN circ. 21930, 21941) (T_0 +11.7 ks - T_0 +92.9 ks)

Nine X-ray sources are detected including the candidate blazar TXS 0506+056.

er Astro 2018 @ ChibaU

IceCube-170922A: Association of blazar TXS 0506+056?

Data from Swift/XRT Monitoring of Fermi-LAT Sources of Interest (www.swift.psu.edu/monitoring/ Stroh & Falcone 2013)

IceCube-170922A: Association of blazar TXS 0506+056?

Data from Swift/XRT Monitoring of Fermi-LAT Sources of Interest (www.swift.psu.edu/monitoring/ Stroh & Falcone 2013)

IceCube-171106A

XRT (T_0 +11.5 ks - T_0 +62.0 ks; 19 tiling)

22:44:51.993 +08:25:57.00 (FK5) 1.000 3295.737 (physical)

Keivani et al., GCN circ. 22115

- 14 X-ray sources are detected.
- 5 sources are within the IceCube error region.
- Two known blazars: 87GB 223537.9+070825 and WISE J224206.68+073148.3 are located inside the error region.

Summary

IceCube Events - Swift observations of five IceCube events -IceCube-170922A • X-ray flare from blazar TXS 0506+056 after the IceCube alert -IceCube-171106A • Two known blazars are inside the IceCube error region.

Swift will keep revolutionize MMA.

Gamma-ray Bursts in the Gravitational Wave Era 2019

Targeting date: October - November 2019 Candidate place: Yokohama, Kanagawa Funding support by Yamada Science Foundation

L. Amati, J.-L. Atteia, B. Cenko, V. Connaughton, J. Greiner, P. Meszaros, P. O'Brien, T. Piran, J. Racusin, L. Singer, N. Tanvir, E. Troja, W. Xiang-Yu, B. Zhang, K. Asano, K. Ioka, N. Kanda, N. Kawai, K. Toma, Y. Fukazawa, K. Murase, R. Yamazaki, M. Yoshida, D. Yonetoku

LOC: T. Sakamoto, M. Serino, S. Kisaka

