# Establishment of Imaging Spectroscopy in MeV gammas & its application to GRB detections



- 2. Imaging Spectroscopy by ETCC
- 3. Imaging Observations for GRBs +Kilonova
- 1. Summary

03/Mar./2017 @ Chiba Univ.

- Two big problems in MeV Astro.
  - 1. Imaging is very difficult
  - 2. Huge background

T. Tanimori on behalf of SMILE-Project, Cosmic-ray group, Physics-II Division,Kyoto Universty, Japan

#### Line gammas from SN Ia SN2014J (INTEGRAL-SPI)



## **Electron Tracking Compton Camera**



#### Well-defined PSF in ETCC and leakage in CC



Case S/N ~1: a peak density of CC increases by ~3 times due to the leakage of background to the source position



### Noise Reduction by Imaging Spec.

FoV 4sr (~60° Radius) PSF 5° FoV 0.02sr BG~1/150



#### Tanimori et al., ApJ (2015)

### Point Spread Function in



PSF(5°) SPD 25° ARM 5° PSF(1.2°) SPD 5° ARM 2°

# Possibility of <1m Crab

For Next MeV Astronomy, significance ~10<sup>-13</sup> erg cm<sup>-2</sup> s<sup>-1</sup>



Gas electron tracking may be a unique solution

- \*An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gammarays" T.Tanimori et al. ApJ 810 (2015)
- "Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics" T.Tanimori et al. Scientific Reports 7, (2017).
- "First On-Site True Gamma-Ray Imaging-Spectroscopy of Contamination near Fukushima Plant", D.Tomono et al.Scientific Reports 7, (2017).



#### Fluence (Real Imaging) Triggers



$$\mathbf{S} \propto \frac{EA \bullet Cs}{\sqrt{EA \bullet \left(Cs + BG\Delta\phi^2\right)}}$$



Noise area =  $(\Delta \phi \times \Delta \phi)$  $\Delta \phi / \Delta \theta = 10$  Noise reduction -> 1/10<sup>2</sup>~1/10<sup>3</sup>

 Very Low BG and Large Field of View (>4str)
 Wide band trigger in vFv (70keV ~>10MeV)
 Wide range of accumulation time 0.1-10<sup>6</sup>s little bias for any type of GRBs insensitive for dilation factor little Sensitive for E<sub>peak</sub> and Redshift



 $\Delta \theta$ 

#### Short GRB formation rate D. Yonetoku, T. Nakamura, T. Sawano et al. 2014



Rate of SGRBs with Luminosity > 10<sup>50</sup> erg/s based on BATSE data

~ 0.02 events/year in (200 Mpc)<sup>3</sup>

### ETCC sensitivity for short GRBs



0.02 x10 ~ 0.2 events/year within 200Mpc In 5years Observation. ~1 coincidence event with GW is expected !

From Doctor thesis of T.Sawano

# Another Approach to GW

Kilo nova or micro nova -> Neutron Star merger Dominant emission MeV gamma 10<sup>41-42</sup>erg/s 1-10days bright

~10days 10<sup>-4</sup> gammas /cm<sup>2</sup>s at 3Mpc kilo nova



Satellite-ETCC 10days ~10<sup>4</sup> gammas detection

20Mpc ~300 gammas >300keV ∫BG ~100 >3σ

N-NGW ~10<sup>3</sup>year within 200Mpc ~1 year within 20Mpc

Most efficient method ??

And Proof of R-process

# Fluence Trigger for long GRB

(G. Ghirlanda et al. MNRAS 448, (2015))
1. Time dilation Fluence trigger is NOT affected.

#### 2. Redshift

Broad band SED (keV to 10 MeV) little effect on fluence.

- Satellite-ETCC (T<sub>90</sub>: 10-100 sec)
- --> Fluence ~10<sup>-8</sup> erg cm<sup>-2</sup>
  - (2-3 GRBs/year/str (z>10)) + wide FoV >4 str
- --> Several GRBs/year (z >10) 200 GRBs/year (z > 5)

Energy band

50-300 keV --> 50 keV-10 MeV more GRBs will be detected.



# Ultra Long duration GRBs (POP-III)





Figure 6. Same as Figure 5, but for the *EXIST* (5–600 keV) case. The red dashed line represents the *EXIST* sensitivity  $f_{sen} \sim 2.4 \times 10^{-10}$  erg cm<sup>-2</sup> s<sup>-1</sup> (5–600 keV,  $5\sigma$ ) in the longest exposure timescale at the on-board process ( $\Delta t \sim 512$  s; Hong et al. 2009). Note that we focus on Pop III GRBs at z = 9 in this figure.

Figure 3. Same as Figure 2 but for the *EXIST* case. *EXIST* will have the limited energy range of 5–600 keV. The red dashed line represents the *EXIST* sensitivity  $f_{\rm sen} \sim 2.4 \times 10^{-10}$  erg cm<sup>-2</sup> s<sup>-1</sup> (5–600 keV, 5 $\sigma$ ) in the longest exposure timescale at the on-board process ( $\Delta t \sim 512$  s; Hong et al. 2009).

Assumed  $E_p$ - $E_{iso}$  relation (Amati) -->  $E_p$ ~120 keV @z = 9

EXIST limit:  $2.4 \times 10^{-10}$  erg cm<sup>-2</sup> s<sup>-1</sup> (500 s) Pop-III Flux  $(10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1})$  (very faint) But, Fluence  $(10^{-5} \text{ erg cm}^{-2})$  (Intense)

Satellite-ETCC; S/√N >5σ 10<sup>3</sup>s; S ~90γ BG 200γ -> 4x10<sup>-11</sup> erg cm<sup>-2</sup> s<sup>-1</sup> 10<sup>5</sup>s; S ~800γ BG 2x10<sup>4</sup> γ -> 4x10<sup>-12</sup> erg cm<sup>-2</sup> s<sup>-1</sup>



## Exploring GRB astronomy by Balloon-SMILE

1. SMILE-II+ one-day flight at Australia in March 2018

2. Next plan, SMILE-III Long-duration flight with larger ETCCs

Polar region 14-50 days (T<sub>obs</sub> >10<sup>6</sup> sec) 40 cm-cubic ETCC x2 modules (Eff. Area ~80 cm<sup>2</sup>)

10<sup>6</sup> s --> ~3x10<sup>-11</sup> erg cm<sup>-2</sup> s<sup>-1</sup> (+ FoV of 4 str) --> ~1 GRBs/day In addition, Polarization Measurements MDP ~ 6% for 10<sup>-6</sup> erg cm<sup>-2</sup> s<sup>-1</sup> (several GRBs/month) ~ 20% for 10<sup>-7</sup> erg cm<sup>-2</sup> s<sup>-1</sup> (~20 GRBs/month)





#### Primordial Black Holes in Solar System

$$\tau \sim \frac{M^3}{\hbar} \sim 10^{10} \,\mathrm{yr} \left(\frac{M}{10^{15} \,\mathrm{g}}\right)^3 \quad \frac{\mathrm{d}E}{\mathrm{d}t} \sim 10^{20} \,\mathrm{erg \ s^{-1}} \left(\frac{10^{15} \,\mathrm{g}}{M}\right)^2 \,\hbar \,\omega \sim 100 \,\mathrm{MeV} \left(\frac{10^{15} \,\mathrm{g}}{M}\right)$$

Primordial B.H. still surviving would emit ~20MeV thermal  $M \sim 10^{15}$  g , ~  $10^{20}$  erg/s

Density ~10<sup>4</sup> pc<sup>-3</sup> (flat 分布で) 10<sup>4</sup> pc<sup>-3</sup> -> ~10 BH <Oort cloud (10<sup>4</sup>AU) Condensation Factor in Galactic halos x ~10<sup>6</sup> => 100AU 球に~10BHs

Satellite-ETCC γ線10個 (1MeV)s<sup>-1</sup> @1AU for 10<sup>20</sup>erg/s BHが10<sup>6</sup>sの間同じ天球位置として、検出限界100γ@10<sup>6</sup>s **この場合、300AUのBHまで観測可能 数10個のBHが見える。** さらに太陽系の増幅効果、ディスク(黄道面)分布、太陽近傍集中 1桁以上の増加、さらにコメット軌道(数日、明るい)、

#### Deep Universe explored by GRBs

#### Biggest Explosion in Universe 10<sup>52-54</sup>erg



# Summary

- ETCC provides Imaging Spectroscopic Observation, and hence reveals the reliable way to reach 1 mCrab sensitivity.
- Clear imaging with well-defined PSF in sub-MeV gives a true Imaging Trigger (Fluence Trigger) and provides a chance to reach most distant GRBs of any type (Short, Long, and Ultra-long). + multi wave observations
- Kilonova(30Mpc) Supernova (100Mpc) Answer for Nucleosynthesis
- ◆来年 3月に気球上がります。