

PRL 111, 021103 (2013)

Imaging Multi-Astroparticles with NTA

Clear Identification of Astroparticle Emitters & Astro Beam Particle Physics

- 7 Air-shower imaging telescope for SubPeV-EeV ν & γ with summit array
- IACT-lilke resolution (< 0.2°) covering large FOV (> π sr) and watching huge air-mass.
- Simultaneous Obs. SubPeV–EeV ν , γ , and CR hadrons both with air Cheren. and fluores.
- Near future, it will be the most sensitive and precise ν detector. The first subPeV-EeV wide E-range γ -ray imaging telescope. M. Sasaki, Imaging Multi-Astroparticles with NTA
- Multi-messenger Astronomy Workshop 2017.03.02 ICHA Chiba Univ. Makoto Sasaki (NTA Int. Promotion WG)

Short History

2013: NTA LoI: by Sasaki & Hou

2014: VHEPA2014 @ Kashiwa IAC: A.Watson, F.Halzen, T.Kifune

2015: VHEPA2015 @ Taipei IAC:A.Watson,F.Halzen,T.Kifune

2015: NTA Forum @ ICRC2015 Hague

Kampert, Sokolsky, Watson, Kifune Hou/Sasaki + several young persons

2016: VHEPA2016 @ Honolulu, Jan.7-9

<u>Set up NTA (PWG)</u> <u>Halzen (UWM)</u>, Browder (UHM), Hou(NTU), Mussa(INF), Ogawa(Toho), Sasaki(UT-ICRR)...

Very High Energy Particle Astronomy Workshop **Toward PeV-EeV Neutrinos!**

Modified from F. Halzen, VHEPA2016

Detect All VHE Particles

Origin of p accelerator:

p acceleration -> observed CR flux

$p\gamma \to \Delta \to n\pi^+$	$\pi^0: \pi^+ = 2:1$	1
$p\gamma \to \Delta \to p\pi^0$	$n + \pi^+ \to p e \bar{\nu}$	$\bar{\nu}_e + e^+ \nu_e \nu_\mu \bar{\nu}_\mu$
	or	296-27
$pp \to \pi X$	$\pi^{-}:\pi^{0}:\pi^{+}=$	1:1:1
The Market Resident State	jen di Latan du Latan	

 $\nu \text{ from } pp \text{ follows CR-}p \text{ spectrum} \\
 E_{\nu} \sim 1/20 E_p \\
 GeV-PeV \gamma \text{ cascade baund for } \nu$

Detect All of them even if transient (time domain <1s) \Rightarrow Imaging AS in wide FOV at same time => NTA

Observable Energy & Distance

- NTA v => source flux NTA γ => propagated flux (cascaded)
- Source location & mechanism
- Probing media & particle physics
- 1) Source physics mechanism: $p\gamma$ or pp?
- 2) CR high-end cut-off: GZK or composition?
- 3) "Highest Energy γ-ray physics":
 - Search for highest E γ -ray in the Universe interaction with BG photons
- 4) Dark matter:
- 5) Search for non-standard physics:
 - Lorentz invariance violation
 - Extra Dimension
- 6) Transient objects:
 - M. Sasaki, Imaging Multi-Astroparticles with NTA

Image v & γ Air-showers

Earth-skimming tau neutrino (ES- v_{τ})

 $E_v > 10 \text{ PeV}$ 10-100 times higher sensitivity

than IceCube

but $L_{decav} = 49m (E_{\tau}/PeV)$

Deep penetrating e & tau neutrino (DP-v_{e,t}

 $0.3 \text{ PeV} < E_v < 10 \text{ PeV}$

Compensate $ES-v_{\tau}$

Realize cross obs. with IceCube

-> Complementary mutual confirm.

Interestign (anti-) electron neutrinos

AS from y's and CR-hadrons

Counter part obj. & AS develop. -> p / γ separation

Mauna Loa one of the best sites for imaging astroparticles

NTA

The largest subaerial volcano in both mass and volume, Mauna Loa has historically been considered <u>the largest volcano on Earth</u>. It is an active shield volcano with relatively gentle slopes, with a volume estimated at approximately 18,000 cubic miles (<u>75,000 km³</u>). [en.wikipedia.org/wiki/Mauna_Loai]

Stereo Obs. ES Tau Showers

τ emarging point

Mauna Loa Site 2 🗼

Mauna Loa slope

air fluorescence

Mauna Loa Site 2

Mauna Kea

Summit Array Baseline Design

4 Stations (□) at 3000-3500m asl. on Mauna Loa 9 detector units / 1 station

Zenith angle = 30° (65° -95°),

Azimuth angle = 240° with 9 detector units

 \rightarrow Stereo obs. at almost all azimuth angles

Nothernmost station = Ashra-1 Mauna Loa Site

NTA DU

NTA Detector Unit = Multi-Tel. with 4 LCs <u>Ashra-1 x 1.5</u> scaled-up + same trigger & readout

Light Collector (LC)Optics with $\phi 1.5m$ pupilFOV 30° = focal sphere $\phi 50cm$

Detector Unit (DU) 4 LCs watch same FOV Coadded 4 images

 $\Rightarrow Effective pupil = \phi 3m$

 \Rightarrow Easy to reject CR- μ

Topographic map implemented in NTA simulation

Enhance sensitivity ~PeV More air-mass can be used Better multi-static ratio Better environ. Condition

old layout design "surrounded-by-mtn's"

8

Only highest energy events are shown. Most of these events are of astrophysical origin. $u^{0} \qquad http://icecube.wisc.edu/news/view/348$ $u^{0} \qquad u^{0} \qquad u^$

Cascade resolution 10-15° - mainly Southern hemisphere Muon resolution 0.5° - only Northern hemisphere

https://icecube.wisc.edu/science/highlights

Detector	Latitude	Zenith	Dec. min, max
KASCADE	49.0° N	< 35°	14°, 84°
EAS-TOP	42.5° N	< 35°	$7^{\circ}, 78^{\circ}$
GAMMA	40.5° N	< 30°	10° , 71°
UMC	40.2° N	< 40°	0°, 80°
CASA-MIA	40.2° N	< 60°	-20°, 90°
Tibet	30.1° N	< 50°	-20°, 80°
ΝΤΑγ	19.5° N	< 95°	-71°, 90°
HAWC	19.0° N	< 45°	-26°, 64°
GRAPES-3	11.4° N	< 25°	-14°, 36°
ІсеТор	90.0° S	< 30°	-90°, -60°

M. Sasaki, Imaging Multi-Astroparticles with NTA

2005年 2007年夏

副ステーション

Ashraマウナロア観測ステーション

マウナケア側からみた主ステーション

マウナケア

主ステーション

Observation - 1:2008年6月28日 - 2009年6月5日 Observation - 2:2009年10月7日 - 2011年1月4日 Observation - 3:2012年1月11日 - 2013年3月25

Ashra-1 Detector Unit System as NTA baseline design

Photo-electric Image Pipeline:

Ashra-1 Light Collector: φ1.2m pupil: 3 collecter lenses φ2.3m mirror: 7 segments

20inch Image Intensifier: Focus & intensify with electrons Hybridized light and electrons -> 42deg FOV & arcmin reso.

FOP bundle Transmittance System:

CMOS Fine Sensor: 4.2 Mpix / 64x64 cells Local exp. & read out -> Good SNR for fluo.

Trigger Sensors & Circuits: FOP bundle transmit coarse image Coupling and splitting light -> Detect both Cherenkov & fluo.

Transfer light images but not electric current.

- simultaneous Cher. & fluo. Trigger
- affordable reduction of pixel cost

Backup Option of Focal Sphere Camera with 128×128 pix MAPMT Array

NTA White Paper describes the cost performance evaluations of options. The TDR will fix the unique design of NTA.

M. Sasaki, Imaging Multi-Astroparticles with NTA

MAPMT

+ light guides

2-3 arcmin. Resol. Over 42deg FOV with Ashra-1 LC

Real Shower Images

- All AS images -> Hillas image parameters, i.e. Width, Length, ...
- Same threshold and cluster cuts are applied as v_{τ} search.

M. Sasaki, Imaging Multi-Astroparticles with N

NLA

Proof of Concept by Ashra-1

Earth-skimming technique of imaging Cherenkov showers

OBSERVATIONAL SEARCH FOR PeV-EeV TAU NEUTRINO FROM GRB081203A

Y. AITA¹, T. AOKI¹, Y. ASAOKA¹, T. CHONAN¹, M. JOBASHI¹, M. MASUDA¹, Y. MORIMOTO¹, K. NODA¹, M. SASAKI¹, J. ASOH², N. ISHIKAWA², S. OGAWA², J. G. LEARNED⁵, S. MATSUNO⁵, S. OLSEN³, P.-M. BINDER⁴, J. HAMILTON⁴, N. SUGIYAMA⁵, AND Y. WATANABE⁶
 (ASIRA-1 COLLABORATION)
 ¹ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8882, Japan: asaoka@icrr.u-tokyo.ac.jp. 2² Department of Physics: and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA
 ³ Department of Physics: and Astronomy, University of Hawaii at Minoa, Honolulu, HI 96822, USA

⁵ Department of Physics and Astrophysics, Nagoya University, Nagoya, Aichi 464-8601, Japan ⁶ Department of Engineering, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan Received 2011 April 29, accepted 2011 June 10; published 2011 June 28

ABSTRACT

We report the first observational search for tau neutrinos (v_t) from gamma-ray bursts (GRBs) using one of the Ashra light collectors. The Earth-skimming v_t technique of imaging Chrenkov τ showers was applied as a detection method. We set stringent upper limits on the v_t fluence in PeV–EeV region for 3780 s (between 2.83 and 1.78 hr before) and another 3780 s (between 2.1.2 and 22.2 hr after) surrounding GRB081203A triggered by the *Swift* satellite. This first search for PeV–EeV v_τ complements other experiments in energy range and methodology, and suggests the prologue of "multi-particle astronomy" with a precise determination of time and location.

D. Gora | Neutrino induced showers | Corsika School | October 23, 2014 | Slide 40

-root of concept

Simulated Images of $ES-v_{\tau}$ Air-showers

M. Sasaki, Imaging Multi-Astroparticles with NTA

Ashra-1

NTA

NTA Simulated Event

Even a low photon-stat. event has good point-back resolution.

τ Propagation in Rock

Can point back to Pevatron within 0.1 arcmin with $ES-v_{\tau}$

M. Sasaki, Imaging Multi-Astroparticles with NTA

Reconstructed Angular Resolution

Y. Asaoka & M. Sasaki, Astropart. Phys. 41 (2013) 7-16

M. Sasaki & G. Hou, NTA LOI

Multistatic Rati

ES+DP-v Sensitivities

Tau decay length proglem for $\text{ES-}v_{\tau}$ is recovered at $\text{E}_v = 300 \text{ TeV} - 10 \text{ PeV}$

Note)

 $DP-v_{\mu}$ not yet implemented in the simulation.

Definition of A_{eff} :

$$\mathbf{N}_{\text{evt}} = \Phi_{v} \cdot \mathbf{A}_{\text{eff}} \cdot \boldsymbol{\Omega}_{\text{FOV}} \cdot \mathbf{T}_{\text{obs}}$$

Glashow共鳴

 $\bar{\nu}_{e} e^{-} \rightarrow W \rightarrow X @ E = 6.3 PeV$ ⇒ 崩壊 ハドロン70%、レプトン30% WB流束仮定 IceCubeで3, 4例/年 期待

NTA DP- v_e 空気シャワーで検定 DPではほぼ v_eのみ、他フレーバBGなし ES比ベエネルギー決定も容易

Diffuse v Sensitivities

Best sensitivity above 1PeV but suffered by the duty factor (15%)

NTA FOV is nearly horizontal
 ⇒ Possible obs. under the Moon (Moon Run)

After successful R&D duty factor 15% => 30%

Q1: GZK effect or Exhausted Sources ?

Of fundamental astrophysical importance: Emax of sources ? Standard Fermi acceleration ?

Karl-Heinz Kampert, VHEPA2014

M. Sasaki, Imaging Multi-Astroparticles with NTA

V LA

work in progress

log, (E/eV)

 $E_{max}^{Fe} \sim 10^{20} \text{ eV}$

Resolve "GZK Effect/Exhausted Source" Problem

Kotera, Allard & Olinto, JCAP 1010 (2010) 013.

Ahler & Halzen (2012)

Pure proton evolution, dip model

Composision dependence

Test the hypothesis by searching for the GZK-v flux

 \Rightarrow NTA can rule it out completely

New γ-ray Imaging Method with PeV γ-ray Air Fluorescence Light

Air depth $690g/cm^2$ @ 3300m asl. ~

Air-shower $X_{max} = 600 \text{g/cm}^2$ at $E_{\gamma} = 1 \text{ PeV}$

NTA can image X_{max} of PeV γ -ray air-shower in the FOV.

690g/cm² @ 3300m asl.

=>

NTA γ effective area is equivalent to an grand array detector at ~3000m asl. with the area of $R_p < 2km @ 1 PeV$

Mauna Loa

1km

~1000 photons

5km

X_{max}

 $600g/cm^2$

CORSIKA full

y 1PeV

Integrated y-ray Flux Sensitivities

Compact Star Clusters in GP SNR γ-ray &v Emissions

 $1\sigma,~2\sigma$ error circles from the center position of the IceCube ${\rm PeV}\nu$

Evoluting young SNR:

Westerlund 1 and HESS J1806-204

Colliding steller flow (CSF) model

Bykov et al., AIP Conference Proceedings 1792, 020003 (2017)

M. Sasaki, Imaging Multi-Astroparticles with NTA

Pevatron Candidate Sgr A* Combined Observation of PeV v & γ-ray

HESS Image GC (Nature 531, 476)

M. Sasaki, Imaging Multi-Astroparticles with NTA

 10^{4}

Possible Confirmation with NTA for HESS GC γ-rays

If NTA γ confirm no cut-off below 100 PeV \Rightarrow NTA must observe v flux from GC

NTA γ confirm no cut-off below 100 PeV and no ν flux

=> Non-standard accel. scenario or

Galactic Plane TeV-PeV Diffuse γ-rays Hypernova

Galactic Plane:

- ~1200 SNRs
- ~20個 Hypernova
- 加速された核子が滞在
- 星間物質とpp散乱⇒
- 拡散γ線やvを放出が期待される

TeV-PeV γ-ray Observation:

- GC ($\alpha {=}~266.4^{\circ}$, $\delta {=}~{-}28.9^{\circ}$) GP ($|b|{<}2^{\circ}$)
- are not included in FOV efficiently

Powerful NTA γ-ray imaging observation with wide FOV

PRD 90 (2014):023010

GRB Neutrino Search Comparison

Complement IceCube:

- Methodology
- Energy
- Self-trigger for Tau Neutrino

0. Auger, PRD 79 (2009) 102001

- 1. IceCube, Nature 484 (2012) 351
- IC40+IC59 stacked 117+181GRBs

 Very strong bias for time window (28s) around Satellite Triggers to suppress huge BG

2. Murase et al. ApJ 651 (2006) L5

- Nearby Low luminosity (LL) GRB (ex. GRB 060218/SN 2006aj) dominate total neutrino fluxes at Earth
- X or γ Satellites cannot detect
- 3. Hummer et al. PRL 108 (2012) 231101
- Recalculated neutrino flux => Ashra Energy Region more important

NTA Survey Depth: z ~ 0.15 (600Mpc) for GRBv flux (by Hummer et al.)

LIGO等とのクロス観測重要 ← NTAv GRB探査領域はLIGOと大きく重なる32

Lorentz Invariance Violation

PeV-EeV vを使えば基本物理を探れる

- 超光速ニュートリノ
- ⇒ 他の粒子放出
- ⇒ スペクトルに鋭い切断
- ⇒ IceCube PeV v から制限?
- ⇒ 高エネルギー側の高統計が必要

 ・ 突発天体からv速度への制限:

 例) PKS B1424-418 とHESE-35 PeVv 一致?
 ⇒ (v-c)/c < O(10⁻¹¹)

⇒ 対応天体との一致の信頼度が重要

\Rightarrow NTA v

NASA: https://www.nasa.gov/feature/goddard/nasagoddard-scientist-gives-outlaw-particles-less-room-to-hide

Extra Dimension Search

重力が3+1次元で弱いのは他次元に伝達し たため

減少Planck質量以上でマイクロBHの生成

⇒ vN散乱断面積の増加

もしくは、散乱長の変化による、

地球との散乱角度分布の変化

LHC(7TeV)でも探査、µ BH質量制限 NTA ES-v では:

地球かすり角(0)分布異常

NTA ES-v / DP-v の事例数の比

に反映される 検定に高統計と高い角度分解能が必要

 \Rightarrow NTA v

E _v (PeV)	L _{cc} [∨] (10 ⁷ g/cm²)	-θ _{elev} (deg)
1	270	32
10	94	16
100	35	5.9
1000	14	2.3

[M.Sasaki et al., Astropart. Phys. 19 (2003) 37]

Summary

Open a new chapter of physics with NTA

v & γ telescope with < 0.2° resolution, > π sr FOV, and high sensitivity in subPeV-EeV.

- v & γ cross detection with IceCube around 1 PeV
- Check $v \& \gamma$ wide range spectra in subPeV-EeV
- v & γ survey of GP including GC
- => Clear ID of position and mechanism of Pevatrons
- Search for v & γ short burst with LIGO and others
- => Significant & complementary contributions to Time Domain Astronomy
- => NTA can also issue v & γ burst alerts rapidly
- Probing astroparticles propagating in BG photons
- => Solving out GZK-problem with testing diffuse-v flux
- \Rightarrow v & γ combination to reveal BG photon density more precisely
- Probing non-standard physics at energy frontier
- => Highest energy v particle physics

Extra dimension, Lorentz invariance violation, ...

 \Rightarrow Highest energy γ -ray observation

New "Super-Cutoff Problem" a la Super-GZK

Toward Comprehensive Understandings for VHE Particle Universe