Swift and CALET による 非電磁波(ニュートリノ) アラートの フォローアップ観測

T. Sakamoto (AGU), P. Evans (U of Leicester)

Contents

- Swift
 - Introduction of Swift
 - Unique Swift's characteristics
 - Follow-up IceCube alerts (2011-2014)
 - Follow-up ANTARES alerts
 - Follow-up real-time IceCube alerts (2016-)
 - IceCube-160217: Triplet event
- CALET
 - Introduction of CALET
 - Search for EM counterpart of IceCube events

GRBs as the sources for UHECR?

(Aartsen+ 2017, astro-ph/1702.06868)

$$p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \rightarrow n + e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$

IceCube: 508 GRBs (Northern Hemisphere), 664 GRBs (Southern Hemisphere)

Why X-ray?

(Question) Find the afterglow of GRB 161219B

X-ray (Swift/XRT)

Optical (Swift/UVOT)

Why X-ray?

(Question) Find the afterglow of GRB 161219B

X-ray (Swift/XRT)

Optical (Swift/UVOT)

Swift

2004-

Swift Gamma-ray Burst Explorer Mission

- NASA's Medium-Class Explorers (MIDEX)
 - Jan 1999: Selected for Phase A study
 - Oct 1999: Selected for flight
 - Nov 2004: Launch
- International collaboration (mainly US, UK and Italy)
 - Burst Alert Telescope (BAT): New development at NASA/GSFC and LANL
 - X-ray Telescope (XRT): Mirror (JET-X FM unit), CCD (XMM-Newton EPIC MOS); PSU, INAF and UL
 - Ultra-Violet/Optical Telescope (UVOT): Copy of XMM-Newton OM;
 PSU and MSSL
- Successful mission extension
 - 2016 NASA Astrophysics Senior Review ranked #1!

Burst Alert Telescope (BAT)

E_range: 15-150 keV (15-350 keV)

Det: CdZnTe (4 x 4 x 2 mm³)

of detectors: 32,768 (256 x 128)

FOV: 120 deg x 90 deg

Pos: 1'-3'

UV/Optical Telescope (UVOT)

Aperture: 30 cm (XMM OM) Det: MCP+CCD (XMM OM)

FOV: 17' x 17'

7 filters (UV - Opt)+2 grism

E_range: 0.3-10 keV Focal Length: 3.5m

Det: X-ray CCD (XMM MOS)

FOV: 23' x 23'

X-Ray Telescope (XRT)

Fully Automated Observations

Observations of afterglows right off the bat (no human in the loop).

BAT GRB detection: T₀

BAT GRB position: $T_0 + \sim 20 \text{ s}$ (3')

Images: GRB 080319B

Gamma-ray Image (BAT) X-ray Image (XRT)

BAT 3' position

Optical Image (UVOT)

Multi-messenger Astro @ ChibaU

Swift Operation and Available Data

- BAT on-board trigger
 - Automatic XRT/UVOT Observations (T₀+~100s)
 - BAT event data (T₀-250 s T₀+1000 s)
- Target of Opportunity (ToO) observation
 - Fast ToO is possible (within an hour)
 - New X-ray (XRT) and UV/optical (UVOT) data of the field
 - Possible tiling observation
- Regular operation
 - BAT: raw light curve data (64 ms, 1.6 s), scaled map data and survey data

Challenges for non-EM Counterpart Search

Large error region (~scale of degrees)

BAT

FOV: Enough Sensitivity: Not good (~10⁻⁹ erg cm⁻² s⁻¹) **XRT**

FOV: Not enough Sensitivity: Good (~5 x 10⁻¹⁴ erg cm⁻² s⁻¹) **UVOT**

FOV: Not enough Sensitivity: Good (~20 mag)

- When is the good time to search?
 - Strongly depends on the physical source

Automatic Tiling Observation

Automatic tiling observation capability (Part of the BAT on-board software)

- Try to observe all N tiles in the first orbit
- Continue observing until the requested observing time (min exp/tile = 60 s)

Tiling patterns (figures from J. Kennea)

Required tiling patterr to cover 2° diameter

2011 March – 2014 August IceCube 20 doublet triggers

(Evans+, 2015)

- 7 tiling observations to cover the IceCube 50% error radius (typically 0.5°)
- Typically within 5 hours from the IceCube trigger time
- Typical exposure per tile is 1-2 ksec
- Sensitivity: 6-10 x 10⁻¹³ erg cm⁻² s⁻¹ (more sensitive than the ROSAT All Sky Survey: 2.8 x 10⁻¹² erg cm⁻² s⁻¹)

IceCube 20 doublet triggers

(Evans+, 2015)

IceCube 20 doublet triggers

This source was found in XRT follow up of an IceCube trigger.

And turned out not to be a transient.

Not all fading objects are the counterpart.

(Evans+ 2015)

IceCube 20 doublet triggers

In follow up of 20 doublet triggers, XRT detected 119 sources, only 30 of which were previously catalogued X-ray sources (Evans+ 2015).

The lack of a 'smoking gun' counterpart doesn't mean we didn't find one, just that we didn't find one *that looks like* we expected.

Follow-up ANTARES triggers

- ANTARES triggered Swift, ROTSE and TAROT.
- 42 with optical follow up (ROTSE/Tarot)
- 7 with X-ray follow up (XRT).
- Combination of multiplet triggers, or single high-energy events.
- No counterparts were found in any wavelength (Adrián Martínez+ 2016). Suggests the neutrino were not from GRBs.

(Martinez+ 2016)

Real-time IceCube Alert

Trigger Time	Туре	Position	Error (50% radius)	XRT follow-up	BAT FOV?
2016-07-31 01:55:04.00	HESE/ EHE	(215.109, -0.458)	20.99'	Yes	T ₀ +175 s
2016-08-06 12:21:33.00	EHE	(122.798, -0.733)	6.67'	No	T ₀ +1.0 hr
2016-08-14 21:45:54.00	HESE	(199.310, -32.016)	28.79'	No	T ₀ +1.1 hr
2016-11-03 09:07:31.12	HESE	(40.874, +12.615)	39.00'	Yes	T ₀ +21.4 min
2016-12-10 20:06:40.31	EHE	(45.854, +15.785)	14.99'	No	T ₀ +3.9 hr

- HESE: High Energy Starting Event; a single-neutrino with an energy in the sub-PeV to 1 PeV
- EHE: Extremely High Energy; a single-neutrino with an energy higher than several hundred TeV

IceCube-160731: BAT Prompt Data

BAT 64 ms raw light curve

BAT 15-150 keV sky image

- No significant emission in the 64 ms light curve data (T₀+175 s T₀+250 s)
- No unknown source in the BAT sky image (T_0 +185 s T_0 +462 s) at >5 σ
- $5-\sigma$ 15-150 keV UL: $\frac{3 \times 10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1}}{\text{(assuming E}^{-2}; 300 s exposure)}$

IceCube-160731: XRT/UVOT Follow-up

(Evans+ 2016, GCN Circ. 19747)

- 19 tiling observation (800 s per tile)
- T_0 +3.9 ks to T_0 +46.5 ks
- Six X-ray sources (all ID)
 - Two stars
 - Three quasars
 - One known XRT source
- No transient sources in UVOT
- 3-σ X-ray UL: (3.1-4.3) x 10⁻¹³ erg cm⁻² s⁻¹ (0.3-10 keV; typical AGN spectrum)
- 3-σ optical UL: 18 mag (u)

IceCube-161103: XRT Follow-up

(Evans+ 2016, GCN Circ. 20125)

- 19 tiling observation (150-250 s per tile)
- T_0 +17.5 ks to T_0 +35.5 ks
- Four X-ray sources (all un-ID), but all faint (fainter than the RASS limits)
- 3-σ X-ray UL: (8.1-12) x 10⁻¹³ erg cm⁻² s⁻¹ (0.3-10 keV; typical AGN spectrum)

IceCube-160217: Triplet event

(Aarten+ 2017, astro-ph/1702.06131)

- T₀: 2016-02-17 19:21:31 (arrival time of the first event)
- All three events arrived within less than 100 s
- Swift-BAT, Fermi-LAT, HAWC
- Swift-XRT/UVOT, ASAS-SN, LCO, MASTER, VERITAS

ID	IceCube Event ID	Alert ID	Time	R.A.	Dec.	Error	Deposited Energy
			(s)	(°)	(°)	(°)	(TeV)
1	62474825	7, 8	0	26.0 [30.2]	39.9 [43.2]	4.5 [3.6]	0.26
2	62636100	7	+55.4	24.4 [24.2]	37.8 [38.4]	1.6 [0.9]	1.1
_ 3	62729180	8	+87.3	27.2 [26.8]	40.7 [40.7]	1.4 [0.9]	0.52

IceCube-160217: Triplet event XRT/UVOT Follow-up

(Aarten+ 2017, astro-ph/1702.06131)

- 37 tiling observation (300-400 s per tile)
- T_0 + 22.6 hr T_0 +1.2 day
- Six X-ray sources (one un-ID)
 - One AGN
 - Four stars
- No transient sources in UVOT
- 3-σ X-ray UL: (6.3-8.9) x 10⁻¹³ erg cm⁻² s⁻¹ (0.3-10 keV; typical AGN spectrum)
- 3-σ optical UL: 17.4 mag (u)

IceCube-160217: Triplet event Un-ID X-ray source X6

Follow-up XRT observations of X6: T_0 + 29 day (1 ks) and T_0 +156 day (8.6 ks)

- t^{-0.5} decay (over 5 months)

Unlikely to be a GRB afterglow

Keck/LRIS image

X6: Stellar flare? Distance AGN? But unlikely related to the IceCube-160217

CALET (CALorimetric Electron Telescope)

CALET (CALorimetric Electron Telescope)

Observatory of high energy electrons and gamma-rays

- Observation of high energy cosmic-rays
- All sky gamma-ray survey (> 10 GeV)
- High energy transients (GRBs, SGRs, ...)

Scientific instruments:

- CALorimeter (CAL)
 - Electrons: 1 GeV 20 TeV
 - Gamma-rays: 10 GeV 10 TeV

(1 GeV - 10 TeV)

- Protons and Heavy ions: (~10 GeV 1 PeV)
- **CALET Gamma-ray Burst Monitor (CGBM)**
 - Hard X-ray Monitor (HXM): 7 keV 1 MeV
 - Soft Gamma-ray Monitor (SGM): 100 keV 20 MeV

CALET

Gamma-ray Burst Monitor (CGBM)

Hard X-ray Monitor (HXM)

Soft Gamma-ray	Monitor	SGM
-----------------------	---------	------------

	нхм	SGM
Detector (Crystal)	LaBr ₃ (Ce)	BGO
Number of detector	2	1
Diameter [mm]	61	102
Thickness [mm]	12.7	76
Energy range [keV]	7-1000	100-20000
Energy resolution@662 keV	~3%	~15%
Field of view	~3 sr	~2p sr

CGBM Observation Efficiency

HV-on time: ~60%

Summary of IceCube Event Search by CGBM

Trigger Time	Туре	Comment	GCN
2016-07-31 01:55:04.00	HESE/EHE	Below horizon	-
2016-08-06 12:21:33.00	EHE	HV-off	-
2016-08-14 21:45:54.00	HESE	HV-off	-
2016-11-03 09:07:31.12	HESE	Non-detection	20162
2016-12-10 20:06:40.31	EHE	Non-detection	20253

- HESE: High Energy Starting Event; a single-neutrino with an energy in the sub-PeV to 1 PeV
- EHE: Extremely High Energy; a single-neutrino with an energy higher than several hundred TeV

IceCube-161103

(Kawakubo et al. GCN Circ. 20162)

7 sigma upper limit (50-1000 keV; 1 s): -5.0 x 10⁻⁷ erg cm⁻² s⁻¹ (assuming E⁻²)

No significant emission $>4.2 \sigma$

IceCube-161210

(Kawakubo et al. GCN Circ. 20253)

7 sigma upper limit (50-1000 keV; 1 s): - 5.6 x 10⁻⁷ erg cm⁻² s⁻¹ (assuming E⁻²)

No significant emission $>3.1 \sigma$

Comparison to GRBs

Summary

- EM counterpart search based on the alert from neutrino detectors has just began.
- No success for identifying the EM counterpart of neutrino events.
- Space observatories such as Swift and CALET are ready to follow-up neutrino events.