Multi-messenger astronomy with lcecube

Aya Ishihara (Chiba U)

マルチメッセンジャー天文学研究会(2017/3/2-3@千葉大)

Multimessenger workshop at Chiba U

Contents

Introduction

- Diffuse neutrino flux
- Point source analysis
 - blazar stacking search
 - Coincident neutrino with GRB
- Other indication?
- Follow-up program and realtime alerts from IceCube
 - HESE/EHE public alert channel
 - multiplets alert
 - gamma-ray follow up
 - optical/x-ray follow up
- Summery

Background

 π

Atmospheric Neutrinos

cosmic-ray up to knee : v from π and K decay around and above knee: v from charmed meson decay

Atmospheric neutrino Decay

Air Nuclei

cosmic-rav

μ, μ

μ, μ -bundle

e

Atmospheric muons

dominant but removable since track-like trajectories of Cherenkov photons and its directions is able to be reliably reconstructed

High energy neutrino detection channels

Diffuse neutrino spectra

Diffuse neutrino flux: Powerful tool to search abandant sources

- Accumulate neutrinos from many sources even at very far Universe, or very weak. Different direction or timing, and of different types
- Diffuse flux give hints to build a better point source observation strategy

Upward-going muon track diffuse flux

IceCube ApJ 833 3 (2016)

Energy range of the astrophysical flux: 160TeV - 5.2PeV

$$\Phi_{
m astro} = \Phi_0 \left(rac{E}{E_0}
ight)^{-\gamma}$$

- 6 year sample
 - ApJ 833 3 (2016)
 - $-\gamma = 2.13 \pm 0.13$
- 7 year sample $-\gamma = 2.16 \pm 0.11$

Starting event diffuse flux

• Best fit spectral index

$$\Phi_{\rm astro} = \Phi_0 \left(rac{E}{E_0}
ight)^{-2}$$

was

 γ = 2.2 ± 0.4 (2 yrs) γ = 2.3±0.3 (3 yrs) and currently

Energy threshold ~60GeV

3 year (2010/5-2013/5) sample, PRL 113, 101101

Reduced threshold starting events

IceCube Phys. Rev. D **91**, 022001 (2015)

Lower energy extension of (2 years) analysis down to 1TeV γ = 2.46±0.12

$$\Phi_{
m astro} = \Phi_0 \left(rac{E}{E_0}
ight)^{-\gamma}$$

Parameter	Best-fit value	Number of events
Penetrating μ flux	$1.73\pm0.40\Phi_{ m sibyll+dpmjet}$	30 ± 7
Conventional $ u$ flux	$0.97^{+0.10}_{-0.03}\Phi_{ m HKKMS}$	280^{+28}_{-8}
Prompt ν flux	$< 1.52 \Phi_{\mathrm{ERS}}$ (90% CL)	< 23
Astrophysical Φ_0	$2.06^{+0.35}_{-0.26} imes 10^{-18} { m GeV^{-1} cm^{-2} sr^{-1} s^{-1}}$	87^{+14}_{-10}
Astrophysical γ	2.46 ± 0.12	

A best fit comparison

- Results are consistent but,
 - Keep eye on the
 insignificant 2σ level of
 tension between
 cascade(≈ reduced
 starting) and upward
 track analysis

The most significant cluster p-value 58% with all events, 44% with shower events

Neither in upward-muon sample

Ingredient for point source analysis To improve point source sensitivity

- Livetime, detector size (cross section of detector in the direction to the object) – sqrt(N)
- Angular resolution
 - linear
- Background veto
 - Down BG: atm muons, UP BG: atm nu
 - Surface veto can reduce down muon BG from Southern sky
- Neutrino follow up for transient sources Timing coincident BG cut
 GRB
- Stacking of the "right" class of object
 - Hints from diffuse neutrinos, point source upperlimits and gamma-ray observations
- Multimessenger!!
 - Trigger optical/x-ray/gamma-ray telescopes by neutrino for transient sources

Tracks: induced by ν_{μ} CC interaction

• angular resolution

Median resolution: 0.5° at 100 TeV

• Moon shadow of cosmic ray muons using one year of data (cosmic-ray primaries get absorbed in moon)

- Background dependent on the directions in the sky Southern sky: High energy atm muon BG (Signal PeV-EeV) Northern sky: Atm neutrino BG (signal TeV-PeV)
- Large energy resolution for through going-muon as muon loose energy before reaching IceCube
 - Δlog(E)~0.3 for muon energy deposit to muon energy

Cascade: particle showers

- Good energy resolution of ~10%
- Directional resolution is ~10°
- Sensitive to full sky
- Less atmospheric neutrino background
 - atm muons are reduced by their topology
 - turn over energy from BG to signal is lower; sensitive to lower energy region (10TeV – 100TeV) (upward muon channel sensitive above ~100TeV)

min to year time variability

GRB-correlated neutrino Search

1172 gamma-ray bursts (IceCube 2017, arXive:1702.06868) + 506 GRBs previously analyzed from GCN and the Fermi GBM database

Searched temporally and directionally

- coincident tracks with
 - Southern Hemisphere GRB in May 2010 and May 2015 (5 yrs sample)
 - Northern Hemisphere GRB in May 2008 and May 2015 (7 yrs sample)
- coincident cascade with
 - All sky GRBs between May 2010 and May 2013 (3 yrs sample)

Model Dependent Constraints

No significant correlation yield tighter constraints on model predictions

- Zhang+13
- internal shock model radius R_{IS} where protons are accelerated and the radius R_v where gamma ray photons are generated are the same
- photosphere model $R_{IS} > R_{v}$

 s^{-1})

 sr^{-1}

 cm^{-2}

(GeV)

 $E^2\Phi_{\nu}$

ICMART model (internal collision-induced magnetic reconnection and turbulence) R_{IS} $< R_{v}$

Only single zone models - multiple emission region model predict flux lower than and model IceCube sensitivity $f_n = 10$ and $\Gamma = 300$

Multimessenger workshop at Chiba U

Model Independent Constraints

•

Generic broken power-law spectra

$$\Phi_{\nu}(E) = \Phi_0 \cdot \begin{cases} E^{-1} \varepsilon_b^{-1} & E < \varepsilon_b, \\ E^{-2} & \varepsilon_b \le E < 10 \varepsilon_b, \\ E^{-4} (10 \varepsilon_b)^2 & 10 \varepsilon_b \le E. \end{cases}$$

- More than a factor of 4 improved limits since 2013 nature
- Constrained model predictions normalized to the observed ultra-high energy cosmic ray flux $(10^{44} \frac{erg}{Mpc^{3}yr})$

GRBs contribute no more than 0.4% of the observed diffuse flux

blazar stacking analysis

ApJ vol. 835, no. 1, p. 45 (2017)

Neutrinos from Fermi 2LAC 862 blazar directions

2LAC blazar classification

Radio: FR1 vs FR2

- Optical: FSRQs vs BL Lacs
- **G** SED (synchrotoron-peaked)
 - LSP low-synchrotron peaked >10¹⁴Hz IR-optical
 - HSP high-synchrotron peaked >10¹⁵Hz x-rays
 - ISP intermediate UV

Essentially all FSRQs are LSPs

Neutrino weighting

Require: the total # of observed to be the sum of the signal and background events

$$\ln(L)\{n_{s},\Gamma_{SI}\} = \sum_{i=1}^{N} \ln\left(\frac{n_{s}}{N} \cdot S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI}) + \left(1 - \frac{n_{s}}{N}\right) \cdot B(\cos(\theta_{i}), \varepsilon_{i})\right)$$

$$= \frac{\sin(1 + 1)}{N} \cdot S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}}$$

$$= \frac{S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}}$$

$$= \frac{S(\delta_{i}, RA_{i},$$

Results: Limits on the blazar contribution

UL on E⁻² flux

Spectrum: $\Phi_0 \cdot (E/\text{GeV})^{-2.0}$						
	$\Phi_0^{90\%} [\text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}]$					
Blazar Class	γ -weighting	equal weighting				
All 2LAC Blazars	$1.5 imes 10^{-9}$	$4.7(3.9-5.4) \times 10^{-9}$				
FSRQs	$0.9 imes10^{-9}$	$1.7 (0.8 - 2.6) \times 10^{-9}$				
LSPs	$0.9 imes10^{-9}$	$2.2 (1.4 - 3.0) \times 10^{-9}$				
ISPs/HSPs	$1.3 imes10^{-9}$	$2.5 (1.9 - 3.1) \times 10^{-9}$				
LSP-BL Lacs	$1.2 imes 10^{-9}$	$1.5~(0.5-2.4) \times 10^{-9}$				

Contribution of the total 2LAC blazar sample to the astrophysical neutrino flux

- The equal-weighting upper limit maximally19%-27%,
- gamma-weighting 7%

UL on E^{-2.2~2.5} flux

Equal weighting follows Fermi SCD ApJ, 720:435 (2010)

blazar-v correlation search

MNRAS 457 (2016) Padovani

Neutrino sample

4yr IceCube starting (HESE) events (with conditions >60TeV, <20deg ⇒30evts) and 2 yr HE $ν_{μ}$ sample of 21 through-going μ events

Gamma-ray sample

Independently built Fermi 2FHL, 2WHSP and Fermi 3LAC catalogues

Neutrino events with *γ*-ray counterparts

N_v: the number of v events with at least one γ -ray counterpart found within the median angular error as function of γ -ray flux threshold f_v

For a N_ν (with given catalog, f_γ), chance probability of randomly producing equal or larger N_ν is calculated by randomization of gamma-ray source coordinates – generate ~10⁵ randomized maps

Coincidence of a high-fluence blazar

TANAMI – Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry – is a multiwavelength program that monitors extragalactic jets of the Southern Sky ($\delta < -30^\circ$)

- Studied blazars in the 3 PeV events 6 TANAMI monitoring blazars (mostly FSRQ) in the first two PeV events
- a high fluence blazar PKS B1424-418 outburst showed temporal/positional coincidence with the third PeV event with an approximate chance coincidence of ~5%

ANTARES did not find events from PKS B1424-418

Multimessenger workshop at Chiba U

IceCube's followup program overview

Depending on the source classes, most accessible wavelength differs

Extremly High Energy (EHE) through going muon track

- Targets > PeV
- Simple detected photo-electron number threshold taking the advantage of effectively no background in the highest energy region - as the first hints for the cosmic neutrinos
- Modified for alert to select PeV track events

0.6

0.4

0.2

2.5-4.1 signal events/yr from E^{-2.49} and E⁻² flux with 1.9 BG events/yr

Multimessenger workshop at Chiba U

og10(NPE

Diffuse Analys Online Alert

High energy starting muon event

 HESE channel dominates cascade events – only send alert with a higher trackness

2016 Public Alerts

same event

	AMON ICECUBE_EHE EVENTS – Since June 2016 archived at https://gcn.gsfc.nasa.gov/amon_ehe_events.html								
EVENT			OBSERVATION						
	EventNum_RunNu m	Date	Time UT	NoticeType	RA	Dec	Error	Signalness	
	80127519_128906	16/12/10	20:06:40.31	EHE	46.5799	+14.9800	60.00	0.49023	
	26552458 128311	16/08/06	12:21:33.00	EHE	122.7980	-0.7331	6.67	0.28016	
·	6888376_128290	16/07/31	01:55:04.00	EHE	214.5440	-0.3347	20.99	0.84879	

	AMON ICECUBE_HESE EVENTS – Since April 2016 archived at https://gcn.gsfc.nasa.gov/amon_hese_events.html										
	EVENT		OBSERVATION	DBSERVATION							
	EventNum_RunNu m	Date	Time UT	NoticeType	RA	Dec	Error	Charge	SignalTr		
	38561326_128672	16/11/03	09:07:31.12	HESE	40.8252	+12.5592	66.00	7546.05	0.30		
	58537957_128340	16/08/14	21:45:54.00	HESE	199.3100	-32.0165	89.39	10431.02	0.12		
•	<u>6888376_128290</u>	16/07/31	01:55:04.00	HESE	215.1090	-0.4581	73.79	15814.74	0.91		
	<u>67093193 127853</u>	16/04/27	05:52:32.00	HESE	240.5683	+9.3417	35.99	18883.62	0.92		

The first GCN notice: HESE-160427A

- Event occurred at Wed 27th April 2016 at 05:52:32.00
- First notice sent on Wed 27th April 2016 at 05:53:53
- Revised coordinates sent at Wed 27th April 2016 at 23:24:24
- Event direction RA 16.04deg, Dec 9.34 deg, 90%CL 0.6deg
- Follow-up responses
 - ➢ GCN 19364 Fermi Gamma-Ray Burst Monitor No detection
 - ➢ GCN 19360 Fermi LAT 5 unrelated blazars
 - ➢ GCN 19361 HAWK no detection
 - ➢ GCN 19362 MASTER no detection
 - ➢ GCN 19377 VERITAS no detection
 - ➢ GCN 19392 iPalomar Transient Factory 3 transients, all AGN
 - ➢ GCN 19427 FACT Cherenkov TeV Telescope no detection
 - ➢ GCN 19426 Interplanetary Network no detection
 - GCN 19381 Pan-STARRS 6 SN candidates. The most interesting object is PS16cgx which is consistent with type Ic supernova at z 0.1-0.2 exploded on/around April 27.2

The multiplet event alert

Event sample: High quality muon track events

Rejecting BG events based on a multivariate classifier

- mis-reconstructed events
- down-going atmospheric muons for Northern sky (a bit tighter cut for GFU than OFU)
- low energy atmospheric muons for Southern sky (GFU only)

Making multiplets

OFU

- multiple (≥2) neutrino events within 100s an angular difference of $\leq 3.5^{\circ}$ $\Delta \Psi^2$ ((θ_1^2))
- difference of $\leq 3.5^{\circ}$ • Quality parameter $\lambda = \frac{\Delta \Psi^2}{\sigma_q^2} + 2\ln(2\pi\sigma_q^2) - 2\ln\left(1 - \exp\left(-\frac{\theta_A^2}{\sigma_w^2}\right)\right) + 2\ln\left(\frac{\Delta T}{100s}\right)$
- triplet or more automatically sent
 GFU
- Each event detected at time t_i , define a time window $\Delta t_{ij} = t_i t_j (t_j < t_i)$ to get the expected background N_{BG}^{ij} using randomized data and the observed N_{SIG}^{ij} .
- Poisson probability of observing N_{SIG}^{ij} or larger multiplet with given expected background N_{BG}^{ij} is a quality parameter

Optical (x-ray) Follow-up Program

Have been in operation since 2008

Targets

- GRB, core-collapse supernovae (SNe), GRB afterglow or the rising SN light curve
- Less than 1 minute

Alerts are sent to (with different alert quality threshold, all >90% BG):

- the Robotic Optical Transient Search Experiment (ROSTE, from 2008, now decommissioned) was ${\sim}25$ alerts/year
- Palomar Transient Factory (since 2010) \sim 7 alerts/year
- Swift-XRT for X-ray follow-up (since 2011) \sim 3 alerts/year
- MASTER (since 2016) ${\sim}7$ alerts/year
- ASAS-SN (to come soon)
- LCOGT (to come soon)

The OFU most significant alerts arXive:1506.03115

- In March 2012, the most significant alert during the first 3yrs OFU program was issued
- PTF followed up, a Type IIn supernova PTF12csy was found 0.2deg away from the neutrino alert direction.
- The supernova has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc
- Pan-STARRS1 survey shows that its explosion time was at least 158 days (in the host-galaxy rest frame) before the neutrino alert, implying that a causal connection is unlikely

arXive:1702.06131

- In February 2016, the first and only triplet alert to date was issued
- Expected background cumulative rate of this type of alert is 0.38 since 2008 to the alert time of 2012

Gamma-ray Follow up Program

Searches for an excess of neutrino events on time scale of **up to 3 weeks** around sources from **a predefined source catalog**

- Monitored sources based on the Fermi-LAT 2nd catalog, containing mostly BL-Lac objects and FSRQs, which have exhibited previous variable behavior
- Operating since 2012, private alerts to the MAGIC and VERITAS telescopes. HESS in preparation
- MAGIC with 0.1 alerts/source/year (3.2σ) total 3BG/yr
- Higher threshold for VARITAS (3.6 σ) 1BG/yr
- 14 March to 31 December 2015, 14 alerts and 4 were followed up by MAGIC or VERITAS
 - Follow up is not always possible due to limited IACT (moon light, bad weather)

Multimessenger workshop at Chiba U

The GFU most significant alert

Nov 9, 2012 the most interesting alert, six events during 4.17days with the position of the source SBS 1150+497

- pre-trial $-\log 10(p_{obs})=4.64$
- post-trial $-\log 10(p_{obs}) = 2.60$

VARITAS followed up -

- Due to poor weather and bright moonlight, VARITAS could follow only at the end of Nov 12, 2012 night and continued to the following night - the total exposure time 71.5m
- No evidence of gamma ray flux
- Setting an integrated flux limit (99%CL) above 300GeV at 3.0×10^{-10} cm⁻²s⁻¹ for an assumed differential spectrum with spectral index $\gamma = 2.5$.

Summary of alert channels

Alert	Event type	Coverag e	thres E [TeV]	Median Ang Res [deg]	Time window	Alert rate Sig+BG/ yr	Alert type
EHE	through going ν_{μ} track	All sky	~100	0.25	n/a	\sim 2+2	Public
HESE	starting ν_{μ} track in detector volume	All sky	~60	~1.6	n/a	\sim 1+3	Public
GFU	$ u_{\mu}$ track multiplets	All sky	~0.1	<1	variable, max 21d	~2BGs	Private
O(X)FU	up v _µ track multiplets	Northern sky	~0.1	<1	100s	Varies	Private

Summary

- IceCube discovered diffuse neutrino flux of which energy budget consistent with that of UHECR and diffuse gamma-ray background
- However, still no significant neutrino event cluster
- Limits on the GRB/Blazar components in the observed neutrino flux
- But, there are correlation of HESE/PeV with blazars reported.
 - Neutrino triggering follow-up!
- IceCube has started public alert of neutrino events since 2016
- Private alerts in operation since 2008 and glowing
 - a couple of interesting SNs (type Ic, type IIn) discovered
- Stay tuned for IceCube Gen-2 Significant point source sensitivity improvements expected!!