Swift Follow-Up Observations of \(\nu \)'s and \(\nu + \text{GW} \) events
Swift follow-up of IceCube neutrinos

- **Swift** is a powerful tool to search for transients
- **Swift** searches for EM counterpart to IceCube neutrinos
- Set useful constraints on associated transients
- Started in 2016: **Swift** Guest Investigator Program, Cycles 12 and 14 awarded
- Priority 1 ToO
- Automated system in place
High-energy ν’s detected at the South Pole

Transferred to UW-Madison

Sent to AMON at Penn State

Sent to GCN

(Automatically) trigger observatories
Swift Observations

- IceCube high energy neutrinos trigger Swift via AMON
- Rapid-response mosaic-type follow-up observations
- 7 or 19-point tiling depending on the size of neutrino error region
- ~1 ks of photon counting per tile
- X-ray sources found using automated scripts in place (Evans et al. ApJS 210, 8, 2014)
- Energy range: 0.3-10 keV
- In case of interesting sources monitoring of certain sources requested
On Sept 22, 2017, IceCube detected a high-energy $\nu \approx 290$ TeV energy!
Selected by Extremely High-Energy (EHE) stream

Swift XRT was the first to observe and report TXS 0506+056 in the FoV!
Fermi LAT was the first telescope to report that TXS 0506+056 was in a flaring state!
An extensive multi-wavelength campaign happened!
IceCube-170922A triggered *Swift* in automated fashion via AMON

19-point tiling

3.25 hr after the neutrino detection

Spanned 22.5 hr

9 X-ray sources

X2: TXS 0506+056 (4.6’ away)

Peak Flux:
3.8e-12 ± 8.6e-13 erg cm^{-2} s^{-1}
(0.3-10 keV)

Following the Fermi report of TXS 0506+056 in a GeV-flaring state: Swift monitoring campaign started

Swift Flux of TXS 0506+056

★ 36 more epochs until the end of Nov 2017 (~54 ks)

★ Mean flux = 2.27e-12 erg cm^{-2} s^{-1} (0.3-10 keV)

★ \(N_H = 1.11 \times 10^{21} \) cm^{-2}

★ Horizontal bands: XRT historical data

★ Two epochs: [-15d, +15d] & [+15d, +45d]

P.A. Evans, AK, et al., ATEL 10792 (2017)

Swift Spectral Variability of TXS 0506+056

Solid horizontal: photon index of the stacked X-ray spectrum over the 2 epochs

Dashed lines: uncertainties

\[\alpha_{\text{XRT}} = 2.37 \pm 0.05 \]

UVOT photon index obtained from a power-law fit to the energy flux spectrum

P.A. Evans, AK, et al., ATel 10792 (2017)
22 more epochs after Nov 2017 (Dec 2017 - Dec 2018)
Observation in the 0.3-10 keV
\(N_{\text{H}} = 1.11 \times 10^{21} \text{ cm}^{-2} \)
Horizontal bands: XRT historical data (from before IceCube-170922A)
Swift Spectral Variability: More Observations of TXS 0506+056

36 epochs in Ep. 1 and Ep. 2
22 more epochs after Nov 2017 (Dec 2017 - Dec 2018)
Observation in the 0.3-10 keV
March 31, 2019: IceCube detected a high-energy neutrino, deposited charge ~ 199 keV.

Selected by high-energy starting event (HESE) stream

Initial direction was incorrect

Direction in Sun avoidance region for Swift initially

Observations started 9 days later

Swift followed up the updated direction

The IceCube Collaboration (http://icecube.wisc.edu/) reports:

On March 31, 2019, IceCube detected a track-like, very-high-energy event with a high probability of being produced by a muon neutrino of astrophysical origin. The event was identified by the High Energy Starting Event (HESE) track selection. The IceCube detector was in a normal operating state. HESE tracks have a neutrino interaction vertex inside the detector and produce a muon that only partially traverses the detector volume, and have a high light level (a proxy for energy).

After the initial automated alert was issued, visual inspection of the event revealed that the online directional reconstruction reported in the original GCN (https://gcn.gsfc.nasa.gov/notices amigo/1594.1/1234/1234/1234/1234) was very incorrect, biased by the topology of the event. More sophisticated reconstruction algorithms have been applied offline, with the direction refined to:

Date: 2019/03/31
Time: 06:35:43.44 UT
RA: 337.58 deg (+0.23 deg -0.34 deg 90% PSF containment) J2000
Dec: -20.70 deg (+0.30 deg -0.48 deg 90% PSF containment) J2000

Additionally, given the large deposited energy observed in this event (one of the highest observed so far), it has a very high likelihood of being of astrophysical origin. We strongly encourage follow-up by ground and space-based instruments to help identify a possible astrophysical source for the candidate neutrino.

There are no Fermi 4FGL catalog sources in the 90% region. The nearest source is 1RXS J223249.5-2052222 (4FGL J2232.6-2023) at RA: 338.1725 deg, Dec: -20.3969 deg.

The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector operating at the geographic South Pole, Antarctica. The IceCube real-time alert point of contact can be reached at roc@icecube.wisc.edu.
Swift Observations of IceCube-190331A

- 7-point tiling
- Four X-ray sources
- Three consistent with expectations for serendipitous (unrelated) sources

Source #1:
1WGA J2229.4-2018 from ROSAT/WGACAT (15" away)

- 1.5σ above WGACAT flux
- More observations performed
- No significant variability observed
- Work under progress

Multi-Messenger Astrophysics

- Cosmic rays
- Neutrinos
- Gravitational waves
- Gamma rays

MULTIMESSENGER ASTRONOMY
Multi-Messenger Astrophysics

- Cosmic rays (p)
- Neutrinos (V)
- Gravitational waves (GW)
- Gamma rays (γ)

Multimessenger Astronomy
Multi-Messenger Astrophysics

Icecube-170922A and TXS 0506+056

Credit: NASA/SDO
Credit: NASA/ESA

Sun

Credit: NASA/SDO

SN 1987A

Credit: NASA/ESA

V

neutrinos

gamma rays
Multi-Messenger Astrophysics

MULTIMESSENGER ASTRONOMY

- p: cosmic rays
- V: neutrinos
- GW: gravitational waves
- γ: gamma rays
Multi-Messenger Astrophysics

- Cosmic rays
- Neutrinos
- Gravitational waves
- Gamma rays

MULTIMESSENERG ASTRONOMY
Multi-Messenger Astrophysics

GW170817 and GRB170817

ASTRONOMY

GW

gravitational waves

γ

gamma rays
Multi-Messenger Astrophysics

MULTIMESSENGER ASTRONOMY

p
cosmic rays

V
neutrinos

GW
gravitational waves

\gamma
gamma rays
Multi-Messenger Astrophysics

- Cosmic rays
- Neutrinos
- Gravitational waves
- Gamma rays
Multi-Messenger Astrophysics

- Cosmic rays
- Neutrinos
- Gravitational waves
- Gamma rays
Multi-Messenger Astrophysics

Low-Latency Algorithm for Multi-messenger Astrophysics
Gravitational Wave + High Energy Neutrinos
(LLAMA-GWHEN)
We search for common sources of gravitational waves (GWs) and high-energy neutrinos (HENs) in real-time!

No astrophysical source has yet been observed simultaneously with both messengers!

Work by Columbia University and University of Florida
Several sources proposed:

- Binary neutron star (BNS) merger
- Neutron star – black hole merger
- Core-collapse supernova
- Gamma-ray burst (GRB)
- Soft gamma repeater
- ...

The most promising:
- Short GRBs associated with BNS mergers
- Create relativistic outflows producing HENs
- Revealing unknown sources
Advantages of GW+HEN realtime search

★ **Improved localization:**
 ★ GW area size is a limiting factor for EM follow-up efforts (10s-1000s deg2)
 ★ Neutrinos can provide far superior localization (0.5 deg2)

★ **Sub-threshold search:**
 ★ Events with low significances standalone
 ★ Joint GW+HEN event with higher significance
 ★ Further follow-up observations increase discovery potential

★ **Higher event rate:**
 ★ Automation is needed for higher GW and HEN alert rates to avoid analysis backlogs

Data Stream

★ **GW triggers:**
LIGO/Virgo significant candidate events
generated by detection pipelines
(cWB, GstLAL, and PyCBC)
stored on GraceDB including skymaps

★ Pull data from GraceDB
(currently only public alerts)

★ **IceCube triggers:**
GFU stream

★ Pull data from IceCube’s GFU API

★ LLAMA-GWHEN runs the analysis

★ Produce joint skymap and significance

★ Prepare a summary document
and a GCN Circular draft
Timeline

- LVAlert sent out, pipeline finds trigger ~1 min
- Collect neutrinos = 500s
- LLAMA-GWHEN analysis ~ 10 s
- Produce plots and upload results ~ 10 s

Note: Timeline only roughly to scale.

Legend:
- LVC
- Pipeline
- Nature
- IceCube

Astrophysical signal
Pipeline finds trigger, LVAlert sent out
Pipeline sets up, waits for skymap
1st GW skymap ready (best case)
Await GW skymap & checks; 5 minutes-1 day Collect Neutrinos; 500s
IceCube Triggers from private API
Significance calculation (10s)
Plotting done (10s) Skymap and neutrinos uploaded to Slack

0 ~1 Note: Time since event
GW+HEN event significance

- Test Statistic (TS) based on astrophysical priors and detector characteristics (empirical)
- Define whether a GWHEN correlated signal is:
 - Real event (P_{signal})
 - Chance coincidence of background GW and background neutrino (P_{null})
 - Chance coincidence of astrophysical GW and background neutrino or vice versa ($P_{\text{coincidence}}$)
- Calculate p-values using Bayesian odds ratio as TS

$$TS = \frac{P_{\text{signal}}}{P_{\text{null}} + P_{\text{coincidence}}}$$

Electromagnetic Follow-Up Observations

- Rapid identification of significant GW+HEN coincidence enabling faster and more efficient EM follow-up observations
- Crucial in understanding underlying mechanisms and physics of the sources

Swift-XRT and UVoT target of opportunity (ToO) follow-up:
- Approved proposal
- Cycle 15 guest investigator program (2019-2020)
- Granted four “Highest Priority” ToO
- PI: AK
- Co-I’s: I. Bartos, P. Evans, D. Fox, J. Kennea, Z. Marka, S. Marka
Thank you!