

Neutrinos From A Past Hypernova In The Galactic Center

Haoning He (贺昊宁) RIKEN / PMO

Collaborators: Alexander Kusenko, Shigehiro Nagataki, Herman Lee, Yizhong Fan, Daming Wei

Outlines

- 1. Neutrinos from a CR Accelerator+MC complex in the Galaxy
- 2. Neutrinos from A Past Hypernova the Galactic Center
- 3. Neutrinos from the Choked Jet Accompanied by SNII

Outlines

- 1. Neutrinos from a CR Accelerator+MC complex in the Galaxy
- 2. Neutrinos from A Past Hypernova the Galactic Center
- 3. Neutrinos from the Choked Jet Accompanied by SNII

High Energy Neutrinos from the Galactic Plane

Two Assumptions:

Hadronic Origin
 Cosmic rays are

, p

2. Cosmic rays are accelerated to >PeV

Possible CR Accelerator Sites in the Galaxy

Adapted from Brandt's talk at ICRC2017

Yoast-Hull et al. 2017

Past Massive star explosions+Molecular Cloud Complex

The efficiency of the hadronuclear interaction for a single proton is approximated to be

$$f_{\rm pp,inj} = \min\left(n_{\rm H}\sigma_{\rm pp}cT,1\right) = \min\left(1 \times 10^{-4} M_6 D_{100,29}^{-1.5} T_4^{-0.5},1\right)$$

A General Gamma-Ray Predictions

A General Neutrino Predictions

Pinat & Snchez (2018)

Outlines

- 1. Neutrinos from a CR Accelerator+MC complex in the Galaxy
- 2. Neutrinos from A Past Hypernova the Galactic Center
- 3. Neutrinos from the Choked Jet Accompanied by SNII

>10 TeV photons from the Galactic Center

molecular gas, as traced by its CS line emission³⁰. Black star, location of Sgr A*. Inset (bottom left), simulation of a point-like source. The part of the image shown boxed is magnified in b. b, Zoomed view of the inner \sim 70 pc and the contour of the region used to extract the spectrum of the diffuse emission.

Figure 3 | VHE γ -ray spectra of the diffuse emission and HESS J1745-290. The *y* axis shows fluxes multiplied by a factor E^2 , where *E* is the

Cosmic Ray Accelerators in the GC region

Past Activities of the Suppermassive Black Hole Sagittarius A*

1. Sgr A* is a LLAGN and has a Radiatively inefficient Accretion flows (RIAF) (Fujita, Murase, & Kimura, 2017)

2. A tidal disruption event (TDE) caused by $Sgr A^*$ (Liu et al. 2016)

Non-linear Diffusive Shock Acceleration

Evolving continuous escaping protons from a HNR

 $E_{SN} = 3e52 \text{ erg} (c.f. SN1998bw)$

 $M_{ejecta} = 14 M_{Sun}$

 $dM/dt = 3e-5 M_{Sun}/yr$ $v_{wind} = 10 \text{ km/s}$

E_p=1e52erg

The account of escaping protons for each time bin and each energy bin

Gamma-Ray Spectra

 $D(\epsilon_{\rm p}) = D_{100}(\epsilon_{\rm p}/100 \text{ TeV})^{\delta}$ D100=1e29cm^2/s, T=3e5yr He+ 2019, submitted

A muon-Neutrino Template of the Galactic Center for IceCube

Muon-Neutrino Spectra

IceCube Effective Area

arXiv:1609.04981v2

Predicted muon-Neutrino Counts observed by the IceCube in 10-year Operation

1. Signal neutrinos V.S. Background neutrinos

٠

٠

- 2. Through-going muon neutrinos V.S. Starting muon neutrinos (More exposure is needed to observe starting muon neutrinos.)
- 3. R_A=1.7degree V.S. R_A= 6.7degree (The background is suppressed for central smaller region.)
- 4. E>30TeV V.S. E>100 TeV (Higher energy threshold will suppress the background.)

Through-going muon neutrinos with E>30 TeV

	$R_{\rm A}$	$N_{ m atm}$	$N_{ m iso}$	$N_{ m SD}(\delta=0.6)$	Λ	$V_{ m FD}(\delta=0.6)$	$N_{ m SD}(\delta=0.3)$	$N_{ m FD}(\delta=0.3)$
1.7° 0.11 0.058 1.9 2.3 2.8 4.7	6.7°	1.8	0.93	3.6		4.7	5.2	9.1
	1.7°	0.11	0.058	1.9		2.3	2.8	4.7

Neutrino Counts

Through-going muon neutrinos with E>30 TeV

RA	$N_{ m atm}$	$N_{ m iso}$	$N_{ m SD}(\delta=0.6)$	$N_{ m FD}(\delta=0.6)$	$N_{ m SD}(\delta=0.3)$	$N_{ m FD}(\delta=0.3)$
6.7°	1.8	0.93	3.6	4.7	5.2	9.1
1.7°	0.11	0.058	1.9	2.3	2.8	4.7

Starting muon neutrinos with E>30 TeV

$R_{\rm A}$	$N_{ m atm}$	$N_{ m iso}$	$N_{ m SD}(\delta=0.6)$	$N_{ m FD}(\delta=0.6)$	$N_{ m SD}(\delta=0.3)$	$N_{ m FD}(\delta=0.3)$
6.7°	0.25	0.11	0.52	0.63	0.73	1.2
1.7°	0.015	0.0071	0.27	0.31	0.39	0.61

Through-going muon neutrinos with E>100 TeV

$R_{\rm A}$	$N_{ m atm}$	$N_{ m iso}$	$N_{ m SD}(\delta=0.6)$	$N_{ m FD}(\delta=0.6)$	$N_{ m SD}(\delta=0.3)$	$N_{ m FD}(\delta=0.3)$
6.7°	0.41	0.51	1.2	2.6	1.9	5.4
1.7°	0.025	0.032	0.63	1.2	1.0	2.8

Starting muon neutrinos with E>100 TeV

RA	$N_{ m atm}$	$N_{ m iso}$	$N_{ m SD}(\delta=0.6)$	$N_{ m FD}(\delta=0.6)$	$N_{ m SD}(\delta=0.3)$	$N_{ m FD}(\delta=0.3)$
6.7°	0.049	0.051	0.15	0.30	0.24	0.61
1.7°	0.0031	0.0032	0.077	0.14	0.13	0.31

The probability of detecting 1-5 through-going muon neutrinos by IceCube in 10 years

The confidence level of discovery

If IceCube detect 1, 2, 3 through-going muon neutrinos with energy larger than 30 TeV in 10 years

$N_{ u_{\mu}}$	1	2	3
$C_{\rm sd}(\delta = 0.6)$	91.88%	99.34%	99.95%
$C_{\rm fd}(\delta=0.6)$	93.19%	99.54%	99.97%
$C_{\rm sd}(\delta = 0.3)$	94.34%	99.68%	99.98%
$C_{\rm fd}(\delta=0.3)$	96.55%	99.88%	99.996%

Outlines

- 1. Neutrinos from a CR Accelerator+MC complex in the Galaxy
- 2. Neutrinos from A Past Hypernova the Galactic Center
- 3. Neutrinos from the Choked Jet Accompanied by SNII

Constraints from diffuse gamma rays

Possible solutions

- 1. The neutrino sources themselves are opaque to gamma rays (Hidden source) :
- choked jets in TDEs of supermassive black holes (Wang & Liu 2016; ...)
- choked jets in core-collapse massive stars (Meszaros & Waxman 2001; Razzaque et al.2004; Murase & Ioka 2013; Xiao & Dai 2014; Senno et al. 2016; ...)
- AGN cores (Stecker 2005; Murase et al. 2016; ...)
- Starburst Galaxies (Chang et al. 2016; ...)

2. The neutrino sources are distant (Chang et al. 2016;...)

Jets in Core-Collapse Massive Stars

Jet-driven SNe

Low luminosity GRBs (Shock breakout)

High luminosity GRBs & Low luminosity GRBs Senno, Murase, & Meszaros 2016

Local HL GRB rate: Local LL GRB rate: Local SNII rate: $0.8^{+0.1}_{-0.1} \text{ Gpc}^{-3} \text{ yr}^{-1}$ $164^{+98}_{-65} \text{ Gpc}^{-3} \text{ yr}^{-1}$ $10^{5} \text{ Gpc}^{-3} \text{ yr}^{-1}$

Choked Jets in Red Supergiant Stars

The jet life time is shorter than the time of jet crossing the extended material/ a thick stellar envelope. $t < t_{cros} = 1.1 \times 10^5 \text{ s } R_{13.5}^2 L_{iso,48}^{-1/2} \rho_{H,-7}^{1/2}$ (Meszaros & Waxman 2001; Razzaque et al. 2004; Murase & Ioka 2013; Xiao & Dai 2014; Senno et al. 2016)

Hydrogen envelope: R ~ 3 × 10¹³ cm

Blue Giant

Senno, Murase, & Meszaros 2016

Diffuse Neutrino Spectra: One-component Spectra

The constrained local source rate: 1%-20% of the typical SNII rate

He+, 2018, ApJ, 856, 119H

Multiplets Predicted by the Choked Jet Model

	L_{iso}	t	Г	A_{cj}	$R_{\rm cj}(z=0)$	$R_{\rm cj}(z=0)$ $N_{\rm S}(N_{\nu\mu}>1)$ $N_{\rm S}(N_{\nu\mu}>2)$			
	ergs ⁻¹	S		M_{\odot}^{-1}	$\rm Gpc^{-3}yr^{-1}$	yr ⁻¹	yr ⁻¹	yr ⁻¹	
Soft Phase	$3.3 imes 10^{48}$	3.3×10^4	100	1.4×10^{-3}	2.1×10^4	2.1×10^4 2.0 0.77			
Intermediate Phase	$3.3 imes10^{48}$	$3.3 imes 10^4$	10	$3.0 imes10^{-4}$	4.5×10^3	2.1	0.78	0.42	
Hard Phase	$1.0 imes 10^{51}$	$1.0 imes 10^2$	100	$1.0 imes 10^{-4}$	1.5×10^3	1.5×10^3 2.5 0.81			
		He+, 2018, ApJ, 856, 119H							

We predict that 4 multiplets within ~100 s to ~10,000 s can be found in 10 years operation of IceCube.

- On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, a triplet arriving within 100 s of one another. No likely electromagnetic counterpart was detected. the probability to detect at least one triplet from atmospheric backgrounds is 32%.
- Wider time window might introduce more atmospheric neutrinos.

The IceCube Collaboration, 2017

Follow-up Observations

- Newly Born Jet-driven SNII (asymmetry explosion)
- The time delay: A few hours. 10 Supernova light curves Luminosity (solar units) 10⁹ Type II 10⁸ lype 10 50 100 150 200 Ō Time (days) Adapted from Chaisson & McMillan
- For an extreme high isotropic energy, the associated SN might be a type II superluminous SN (SLSN). Multiplets can be observed by IceCube if the source is located within ~ 0.6 Gpc. This limitation on the source distance (z<0.05) is within the current detection radius of SLSNe.

Follow-up Observations

AMON ICECUBE_HESE/EHE EVENTS Alerts

EVENT	OBSERVAT	DBSERVATION arcmin									
EventNum_RunNum	Date	Time UT	NoticeType	RA	Dec	Error	False_Pos	Pvalue	Charge	SignalTr	N_Events
766165_132518	19/05/04	18:25:18.39	HESE	65.7866	-37.4431	73.79	0.0000e+00	0.0000e+00	7328.35	0.63	1
15947448_132379	19/03/31	06:55:43.44	HESE	355.6349	+71.1170	534.00	0.0000e+00	0.0000e+00	198736.44	0.57	1

IceCube Optical Follow-up (OFU) program and X-ray Follow-up (XFU) program (Kowalski & Mohr 2007; Abbasi et al. 2012; Aartsen et al. 2015c)

X-ray: MAXI,Swift, insight-HXMT, SWOM

Optical:

 Kanata' and `HinOTORI' telescopes, Optical Wide-Field Surveys with Kiso/ Tomo-e Gozen, Okayama-3.8m, Wide Field Survey Telescope (WFST), Subaru Hyper-Suprime-Cam (HSC);
 SWOM/GWAC-F60 A/B, SWOM/GWAC, Xinglong-2.16, GMG-2.4, Large Synoptic Survey Telescope(LSST), Pan-STARRS1(PS1)

Summary

- 1. Neutrinos from a CR Accelerator+MC complex in the Galaxy (HAWC, CTA, LHASSO+Muon neutrinos)
- 2. Neutrinos from A Past Hypernova the Galactic Center (Through-going muon neutrinos with E>30 TeV from the central 1.7 degree region+HAWC&CTA)
- Solution
 Neutrinos from the Choked Jet Accompanied by SNII (A muon neutrino multiplet+The follow up optical and X-ray observations on SNII)

Thank you !