

The Astrophysical Multimessenger Observatory Network

Entering a new era where we can detect the messengers of the four forces of nature.

Entering a new era where we can detect the messengers of the four forces of nature

Force	Messenger	
EM	Photons	
Weak	Neutrinos	
Strong	p, nuclei	
Gravity	Gravitational Waves	

Each messenger has advantages and disadvantages.

Straight Frajectory	Pointing Res.	Cutoff
	<<1°	$E_{\gamma} < 50 \mathrm{TeV}$ $\gamma \gamma_{IR} \rightarrow e^{-}e^{+}$
	hoton ~1°	
B		GZK cutoff E _p <30EeV
	2obs: ~1000 sq.deg.	

Example 1: Electromagnetic radiation from a binary neutron star merger confirmed for GW170817.

GW-

γ-ray

Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind

X-ray

Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL

UV Swift, HST

Optical

Swope, DECam, DLT40, REM-ROS2, HST, Las Cumbres, SkyMapper, VISTA, MASTER, Magellan, Subaru, Pan-STARB91, HCT, TZAC, LSGT, T17, Gemini-South, NTT, GROND, SOAR, ESO-VLT, KMTNet, ESO-VST, VIRT, SALT, CHILESCOPE, TOROS, BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T80S, EABA

IR REM-ROS2, VISTA, Gemini-South, 2MASS, Spitzer, NTT, GROND, SOAR, NOT, ESO-VLT, Kanata Telescope, HST

Radio

ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ADMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effeisberg

Example 2: Coincidence between high-energy neutrinos and gamma-rays from Blazar TXS 0506+056. First evidence of source of neutrinos (3.5 σ). AMON contributed to the distribution of the event IC170922A.

	///////////////////////////////////////	///////////////////////////////////////	/////	//////		
	TITLE:	GCN/AMON NOTICE A				
	NOTICE_DATE:	Fri 22 Sep 17 20:55:13 UT		ori	ginal GCI	N Notic
	NOTICE_TYPE:	AMON ICECUBE EHE	6 6°	ref	ined best	-fit dire
	RUN_NUM:	130033	0.0		170922A	50% - a
	EVENT_NUM:	50579430			170922A	90% - 2
	SRC_RA:	77.2853d {+05h 09m 08s} (J2000),				
		77.5221d {+05h 10m 05s} (current),	6.20			
		76.6176d {+05h 06m 28s} (1950)	0.2			
	SRC_DEC:	+5.7517d {+05d 45' 06"} (J2000),				
		+5.7732d {+05d 46' 24"} (current),				
		+5.6888d {+05d 41' 20"} (1950) .O	E 0º			/
	SRC_ERROR:	14.99 [arcmin radius, stat+sys, 50% con m	5.6			(
	DISCOVERY_DATE:	18018 TJD; 265 DOY; 17/09/22 (yy/mm 는			Т	XS 050
	DISCOVERY_TIME:	75270 SOD {20:54:30.43} UT				
	REVISION:	0	E 40			
	N_EVENTS:	1 [number of neutrinos]	5.4*			
	STREAM:	2				
	DELTA_T:	0.0000 [sec]				
	SIGMA_T:	0.0000e+00 [dn]				
	ENERGY :	1.1998e+02 [TeV]	5.0°			
	SIGNALNESS:	5.6507e-01 [dn]				
	CHARGE :	5784.9552 [pe]		○ 3F	HL	
	SUN_POSTN:	180.03d {+12h 00m 08s} -0.01d {-00d 0		0 3F	GL	
	SUN_DIST:	102.45 [deg] Sun_angle= 6.8 [hr] (Wes	4.6°			_
	MOON_POSTN:	211.24d {+14h 04m 58s} -7.56d {-07d 3		78.4°	78.0°	77
	MOON_DIST:	134.02 [deg]				Right
	GAL_COORDS:	195.31,-19.67 [deg] galactic lon, lat of t	ne ev	/ent		J
	ECL_COORDS:	76.75,-17.10 [deg] ecliptic lon,lat of t	he ev	7ent		
	COMMENTS:	AMON_ICECUBE_EHE.				
_						

(Near) Real-time searches for transients can continue to advance multimessenger astrophysics. The Astrophysical Multimessenger Observatory Network (AMON) has been built with this idea.

https://arxiv.org/abs/1903.08714

• Real-time coincidences

• Receive the event after it is built in each observatory and do the coincidence analysis right away in the AMON servers.

Sub-threshold data

- Data that is below the detection threshold from each observatory.
- Careful coincident analysis can bring a sub-threshold event into a possible detection

AMON Framework

https://arxiv.org/abs/1903.08714

- Triggering Observatories
- Follow-up Observatories
- Archival Studies
 - Store events
 - Offline Coincidence analyses
 - Validate analyses
- Real-time coincidences
 - Use of **sub-threshold data**
- Pass-Through
 - Broadcast directly to GCN/TAN

Focusing on high-energy astrophysics. We want to help solve some of the current questions in the field

 Acceleration mechanisms Sources of UHECRs Sources of neutrinos • New fundamental physics • etc.

Large span of transient events that we can look for:

Stellar Merger Model for a Short-Duration Gamma-Ray Burst

AGN

http://chandra.harvard.edu/photo/2007/agns/

- •Long GRBs
- •Short GRBs
- •SN
- Choked jet supernova
- Blazars
- •PBHs

• • •

• Binary Mergers

AMON members and prospective* members.

SWIFT VERITAS HESS MAGIC

FACT Fermi HAWC

LMT **Palomar Transient Factory MASTER**

AMON receives sub-threshold data events and sends alerts to GCN/TAN which then are distributed to partner observatories/public. Interesting follow-ups are sent back to AMON and AMON then broadcasts alert revisions

CR

GW

AMO

Technical Implementation: AMON uses an **asynchronous distribution system** to calculate coincidence searches in real-time. Using the **VOEvent protocol**. Software is written in Python. Uses Celery, Twisted and Comet.

AmonPy software in GitHub:<u>https://github.com/AMONCode/Analysis</u>

AMON Database resides in two servers at Penn State. Anticipate to receive 1TB/yr of data.

- Servers are mirrored and redundant for safety.
- Uptime of 99.99% (<1 hr of downtime per year)
- The database is designed with MySQL
- It currently contains:
 - Public:
 - data
 - Private:

• IC 40/59 and 1 year of IC 86, SWIFT and Fermi

• ANTARES, Auger data, HAWC Daily Monitoring and HAWC GRB-Like data

AMON Database resides in two servers at Penn State. Anticipate to receive 1TB/yr of data.

-Each observatory retains full rights over use of

-All coincidence analyses require explicit permission of each participating collaboration

Fermi

nitoring

Results 1A: The Swift Campaigns: follow-up observations

- Observation tiles centered on first IceCube alert (dashed line)
- 1st campaign: observations revealed multiple x-ray sources that were previously identified
- No compelling candidate X-ray or UV/optical counterpart for any of the events. Set up flux upper-limits

16

Other follow ups c	of AMO	N-brok
 AGILE ANTARES FACT Fermi GBM 	 Fermi LAT HAVVC H.E.S.S INTEGRAL 	IPN Konus-Wi LCOGT MAGIC
Event/ Follow-up		V
IC 190504A		
IC 190503A		
IC 190331A		
IC 190221A		
IC 190124A		
IC 190104A		
IC 181023A		
IC 181014A		
IC 180908A	 I	

Other follo	ow ups c	of AMO	N-brok
	 AGILE ANTARES FACT Fermi GBM 	 Fermi LAT HAWC H.E.S.S INTEGRAL 	IPN Konus-Wi LCOGT MAGIC
Event/ Fo	llow-up		V
IC 171	106A		
IC 171	.025		
IC 1709	922A		
IC 1703	321A		
IC 1703	312A		
IC 161	210		
IC 161	103		
IC 1608	314A		
IC 1608	306A		
IC 1607	731A		

Results 2: IceCube-FermiLAT archival analysis. No significant deviations from the null hypothesis were found in the unscrambled dataset.

Results 3: started sending realtime alerts of coincidences between ANTARES and Fermi-LAT

ANTARES + Fermi LAT

- Coincidence defined as follows: \bullet
 - Spatial: events are less than 5° from each other \bullet
 - Temporal: ± 1000 s from time of neutrino
- Use of a pseudo-likelihood method for ranking statistic

See <u>https://arxiv.org/abs/1904.06420</u> for method description

Day	False Alarm Rate (per year)
2019/04/28	2.055
2019/05/12	0.063

Current Status: AMON is receiving events in real time. Public events can be found in GCN/TAN webpage

- Events in real-time.
- Receiving ~3000 events per day

Burst and ANTARES-FermiLAT

AMON members and prospective* members.

SWIFT VERITAS HESS MAGIC

FACT Fermi HAWC

LMT **Palomar Transient Factory MASTER**

AMON server is up and running

- AMON greatly **simplifies multimessengers searches**:
 - Common data format, transfer protocol, event database, MoUs.
- New participants are always welcome!
- Webpage: <u>http://www.amon.psu.edu/</u>
- MoU: <u>http://www.amon.psu.edu/join-amon/</u>

• AMON using **sub-threshold** data for multimessenger searches in **real-time**.

Back-up Slides

Data description:

1 transit of the event above the detector. IceCube events are single through-going track events.

Information sent to AMON from both observatories:

- Position
- Uncertainty in position

Animite Standing on 200 mon Stal

- Significance (>2.75)
- **Start time of transit**

End time of transit

HAWC events are "hotspots" of significant excesses above background averaged over

- ARINAS STARTING TO PROVISION DE PRESE Position
- Uncertainty in position
- Time of event
- False positive rate density (FPRD) Signalness

Results 1B: The Swift Campaigns: IC170922A

- Tiles around IC170922A
 - Nine sources revealed in the field of view
- TXS 0506+056 or J0509+0541 is circled in Red
- Keivani et al. 2018: possible mechanism is hybrid leptonic scenario y-rays produced by IC and high energy neutrinos by subdominant hadronic component. (<u>https://arxiv.org/pdf/</u> 1807.04537.pdf)

