Follow-up observation with Subaru/Hyper Suprime-Cam

Nozomu Tominaga (Konan University/Kavli IPMU)

22nd May 2019 6th AMON Workshop

Subaru/Hyper Suprime Cam

- Hyper Suprime-Cam (HSC)
 - Diameter: 8.2m, FoV: 1.77deg², ~900M pixels

Etendue of optical telescopes

Usage of Subaru/HSC

- HSC-SSP
 - Transient survey in COSMOS and SXDS
- Openuse proposals
 - High-cadence transient survey
 - Supernovae in the early phase
 - Target-of-opportunity follow-up observation
 - Gravitational wave sources
 - Fast radio bursts
 - High-energy neutrinos

J-GEM activity in LVC O3 observation

- S190408an (BBH, 387deg²)
 - GCN 24064
- S190412m (BBH, 156deg²)
 - GCN 24113, 24350
- S190425z (BNS, 7461deg²)
 - GCN 24192, 24219, 24230, 24238
- S190426c (BNS[49%], NSBH[13%], 1131deg²)
 - GCN 24299
- S190510g (BNS[98%] -> Terrestrial[58%], BNS[42%], 1166deg²)
 - GCN 24450, 24464

Targeted observation Wide-field observation

Latency of Subaru telescope

- S190510g (LVC alert)
 - Preliminary alert: 13:03 May 10, 2019 (JST)
 - Initial alert: 14:24 May 10, 2019 (JST)
 - HSC observation start: 14:46 May 10, 2019 (JST)
 - GCN 24450

LIGO/Virgo S190510g: HSC Y-band follow-up observation

Survey pointings with Subaru/HSC HSC-Y, 120deg², 2 epochs

ToO observations of GW151226

63.5deg², i=24.5, z=23.8, 3 epochs (Jan 7, 13 and Feb 6, 2015)

Table 3. Numbers of surviving candidates with different criteria.*

Condition	Cuts based on decline					
	No cut	$\Delta i > 0.0$	$\Delta i > 0.5$	$\Delta i > 1.0$	$\Delta i > 1.5$	
All	1744(1729)	829(814)	236(221)	154(139)	118(109)	
Fadeout only	430(415)	218(203)	92(77)	45(30)	24(15)	
$+(i-z)_{1st} > 0.0$	294(279)	135(120)	55(40)	29(14)	17(8)	
$+(i-z)_{1st} > 0.5$	185(170)	72(57)	29(14)	16(1)	9(0)	
$+(i-z)_{1st} > 1.0$	75(71)	22(18)	8(4)	4(0)	2(0)	

*This table corresponds to the result of steps 4a and b. The number of candidates with no stellar-like counterpart in the reference frame is shown in parentheses (step 4c).

GW170817 -associated AT2017gfo had ∆z ~ 2 i-z ~ +0.4

Table 4. Numbers of surviving candidates associated with GLADE galaxies.*

Condition	Cuts based on decline					
	No cut	$\Delta i > 0.0$	$\Delta i > 0.5$	$\Delta i > 1.0$	$\Delta i > 1.5$	
All	132(130)	67(65)	16(14)	13(11)	8(7)	
Fadeout only	43(41)	23(21)	8(6)	7(5)	3(2)	
$+(i-z)_{1st} > 0.0$	32(30)	16(14)	6(4)	5(3)	1(0)	
$+(i-z)_{1st} > 0.5$	21(19)	9(7)	2(0)	2(0)	1(0)	
$+(i-z)_{1st}>1.0$	13(11)	5(3)	2(0)	2(0)	1(0)	

*This table is the same as table 3 but is associated with GLADE galaxies and corresponds to the results of step 5.

The time variability and color can narrow down the candidates. Utsumi, NT, Tanaka+18

ToO observations of GW170817

• 23.6deg², z=21.0, 2 epochs (Aug 18 and 19, 2017)

~85 astronomical variable objects in 23.6 deg² w/o distance information => 3.6 variable objects/deg² in images with limmag = 21.0

NT, Tanaka, Morokuma+18a

ToO observations of GW170817

We calculate the possibility P_{3D} that the host galaxy is located in the 3D skymap, where ϕ is the luminosity function.

$$P_{3\mathrm{D}}(\lambda_j, m_j) = \frac{\int_{D_{\mathrm{mean}} - 3\sigma_D}^{D_{\mathrm{mean}} + 3\sigma_D} \phi(\lambda[\lambda_j, D], M[m_j, D]) A(D) dD}{\int_0^\infty \phi(\lambda[\lambda_j, D], M[m_j, D]) A(D) dD}$$

 P_{3D} can be significantly small for distant galaxy if D_{mean} +3 σ_D is small (40⁺⁸₋₁₄Mpc for GW170817). For example,

- P_{3D} of AT2017gfo is 64%.
- P_{3D} of the other candidates are 0.0093-0.21%.

The distance information is quite useful.

NT, Tanaka, Morokuma+18a

ToO observations of FRB151230

- 0.2deg² (1.77deg²)
- g=26.5, r=26.3, i=26.5
- 3 epochs (Jan 7, 10, and 13, 2016)

13 astronomical variable objects in 0.2deg² with time variability in 1 week => 65 variable objects/deg² in images with limmag = 26.5

NT, Niino, Totani+18b

ToO observations of FRB151230

- Redshift information constrains the association with SN Ia
 - SN la: Q<4x10⁻⁸

The association of SNe Ia with $t_{exp} = 0$ at z \leq 0.6 with FRB 151230 is excluded.

 $z < \sim 0.8$ from the DM of FRB 151230

Two possible explanations

- SNe Ia association with FRB 151230 is allowed for z ~ 0.6–0.8.
- The DM of the host galaxy of FRB 151230 < 300 pc cm⁻³.

NT, Niino, Totani+18b

Lessons from previous ToO observations

There are so many contamination in deep images taken, e.g., with Subaru/HSC.

- GW151226
 - The time variability (incl. constraint on the date of event) and color can reduce the number of candidates.
 - The distance information is also important.
- GW170817
 - 3.6 variable objects/deg² in images with limmag = 21.0
 - The distance information is critical to narrow down the candidates and pick up AT2017gfo.
- FRB151230
 - 65 variable objects/deg² in images with a variability of limmag = 26.5
 - The multi-color light curves and photo-z of host galaxies help to reduce the number of candidates.
 - Assuming the date of event, the redshift constraints from radio and optical observation restrict the association with SNe Ia.

Additional information is important in deep follow-up observations. What is additional information?

- Distance (redshift)
- Time variability
- Color
- Date of event