Search for neutrino sources with optical telescopes

Nora Linn Strotjohann

Amon workshop Chiba, May 2019

Strong evidence for extragalactic neutrino sources

- > diffuse astrophysical neutrino flux
- > individual high-energy astrophysical events
- > Fermi blazar TXS0506+056 identified as likely extragalactic neutrinos source

Back-of-the-envelope estimation

Most likely origin of EHE events (29 observed from May 2010 to Sep. 2017)

> ~60% of the extremely-high-energy (EHE) alerts are astrophysical

Back-of-the-envelope estimation

Most likely origin of EHE events (29 observed from May 2010 to Sep. 2017)

- > average 90% error circle 1.75(°)² → 8% chance to find an unrelated Fermi blazar
- > 2.4 chance coincidences expected (0 detected)

Back-of-the-envelope estimation

Most likely origin of EHE events (29 observed from May 2010 to Sep. 2017)

- > assume that coincidence with TXS 0506+065 is real
- > calculate allowed fraction of EHE events from resolved and unresolved Fermi blazars $\rightarrow 0.2 17\%$

DESY

Back of the envelope estimation

Most likely origin of EHE events (29 observed from May 2010 to Sep. 2017)

 \rightarrow most EHE events come from so far unidentified astrophysical sources

Explosions of massive	Accreting supermassive	Calorimetric	
stars	black holes	sources	
seconds weeks	months con	stant live	time

Explosions of star	of massive rs	Accreting supermassive black holes		Calorimetric sources	
seconds For the second	weeks	months co	nst	ant live	etime

Expected multiwavelength emission

GRBs

choked or II-GRBs

type lln SNe

jetted TDEs

Expected emission:

γ-rays, X-rays, UV, **optical**, radio rarely: VHE γ-rays

optical maybe: γ-rays, Xrays, late radio

optical

rarely: X-rays

optical, UV, X-rays

all wavelengths

Expected multiwavelength emission

	Expected emission:	Opt. peak mag.:	Duration:
GRBs	γ-rays, X-rays, UV, optical rarely: VHE γ-rays	-24th	~100 s
choked or II-GRBs	optical maybe: γ-rays, X- rays, late radio	SN: -19th	v: ~100 s em.: ~30 d
type IIn SNe	optical rarely: γ-rays, X-rays	-18th (-21th if superl.)	~100 days
jetted TDEs	optical, UV, X-rays	-20th	~100 days
blazars	all wavelengths	-26th	minutes - months
Nora Linn Strot	johann Optical emission from neutrin	no sources 2019-05-21 I	Page 14 (DESY)

Why look for optical emission?

- > all source classes emit in the optical
- > telescopes can cover a large part of the sky
- > most neutrino sources are not detected by current gamma-ray telescopes

Disadvantage:

- > large number of counterpart candidates
 - \rightarrow a significant correlation is only expected for relatively rare sources

IceCube's optical and X-ray follow-up program

No likely counterparts detected

- > alert rates consistent with expected number of chance coincidences [arxiv:1807.11492]
- > most significant alerts consistent with background [arxiv:1506.03115, 1702.06131]
- > no likely counterparts detected in optical or X-ray observations

 \rightarrow no bright (>2 events) 100s long transients

Distance of a neutrino source

> simulate cosmic population of neutrino sources (here no evolution): calculate which of them are detected with 1, 2, or 3 events

 $\rightarrow\,$ single events are most likely detected from distant sources

Fluxes and distances of sources detected with one event

> median distance is 3 Gpc or distance modulus of 42 (for no-evolution scenario)

Magnitudes of sources detected with one event

> here for an absolute optical magnitude of -20

Magnitudes of sources detected with one event

> here for an absolute optical magnitude of -20

> most counterparts are close to the detection limit of a typical telescope

Probability to detect optical counterpart of EHE event

> probability that counterpart is detectable >>1 for typical telescope and moderately bright source

Probability to detect optical counterpart of EHE event

- > probability that counterpart is detectable >>1 for typical telescope and moderately bright source
 - $\rightarrow\,$ observe many alerts to increase chances of detection

Probability to detect optical counterpart of EHE event

- > probability that counterpart is detectable >>1 for typical telescope and moderately bright source
 - $\rightarrow\,$ observe many alerts to increase chances of detection

Number of alerts vs. signal to background ratio

Iowering the energy threshold increases number of signal alerts
 future IceCube alerts: golden 50% signal & bronze 30% signal
 angular resolution also drops (not considered here)

Required number of neutrino alerts for a detection

- > number of events per year for which the detection of 1 true counterpart is expected
- > number of astrophysical alerts in parentheses

	GRB (-24 mag)	TDE (-20 mag)	SN Ic (-19 mag)	SN IIn (-18 mag)
Panstarrs (lim. mag. 22.5)	1.2 (1.1)	2.6 (2)	4 (2.5)	7.4 (4)
ZTF (lim. mag. 20.5)	1.4 (1.3)	6.5 (3.7)	32 (8.3)	300 (20)
ASAS-SN (lim. mag. 18)	4 (2.5)	~1000 (33)	~104 (100)	>104 (>100)

> green: IceCube golden alerts, yellow: bronze alerts, red: larger sample required or do catalog search

> losses due to bad weather, engineering etc. not considered

Search strategies for different optical telescopes

global network of small telescopes:

focus on <u>quick follow-up</u>
search for GRB-like afterglows or other quickly fading transients

medium-size telescopes:

- distribute observation time over <u>many</u> <u>neutrino alerts</u>
- search for peculiar source (jetted TDE) or produce catalog for likelihood search

large telescopes:

- <u>deep observations</u> for alerts with highest energy and best angular reconstruction
- search for fainter sources (like CCSNe)
- indepth analysis of counterpart candidates

Search strategies for different optical telescopes

global network of small telescopes:

focus on <u>quick follow-up</u>
search for GRB-like afterglows or other quickly fading transients

medium-size telescopes:

- distribute observation time over <u>many</u> <u>neutrino alerts</u>

- search for peculiar source (jetted TDE) or produce catalog for likelihood search

large telescopes:

- <u>deep observations</u> for alerts with highest energy and best angular reconstruction
- search for fainter sources (like CCSNe)
- indepth analysis of counterpart candidates

Important for all follow-up observations:

- > large enough field of view: ca. 1 deg diameter
- > if neutrinos expected at explosion: significance proportional to uncertainty on explosion date \rightarrow quick observations
- > sufficient spectroscopic time to confirm/rule out faint candidates (~80% of detected SNe are of type Ia)

MASTER global net

> 9 telescopes around the globe → quick observations nearly always possible

example of GRB140801A:

- > observations started automatically triggered by Fermi GCN
- > afterglow detected 53s after GCN notice (99s after Fermi detection)

global network of small telescopes

- > other telescopes catch up 1h later: source has faded by 5 mag
- IceCube has strong limits on gamma-ray bright GRBs, but not on lowluminosity, orphan or "dirty fireball" GRBs

MASTER C

Zwicky Transient Facility

- > 48-inch (120cm) aperture
- > can monitor entire northern sky in one night out to 20.5th mag
- > large field of view: 47 square degrees
- > Desy is ZTF and IceCube member: dedicated neutrino follow-up program

medium-size telescopes

- > should be able to observe 50-75% of IceCube alerts
- > very unlucky since survey start in 2018:

Туре	date	RA	Dec	Error	Comments
Doublet	2018-06-11 23:36:04.87	255.63	13.32	0.90	observed
EHE	2018-09-08 19:59:31.84	145.77	-2.52	0.34	Sun distance 22.68 deg
HESE	2018-10-14 11:52:19.07	225.18	-34.79	1.22	Sun distance 35.73 deg
EHE	2018-10-23 16:37:32.65	269.84	-8.89	0.29	camera down
HESE	2018-10-31 02:02:51.41	182.79	-68.39	1.22	retracted
HESE	2019-01-24 03:44:35	307.19	-32.29	1.23	Sun distance 13 deg
HESE	2019-03-31 06:55:43	337.79	-21.08	2.624	Sun too close

Zwicky Transient Facility

- > 2nd strategy: produce catalog for stacked search
- > ZTF "redshift completeness factor" survey: obtain spectra for all objects brighter than 18.5th magnitude
- > until March 2019: 662 SNe classified, 177 of them are CCSNe

medium-size telescopes

 > likelihood analysis to search for neutrino emission from choked-jet and interacting SNe:
 ~250 CCSNe and 10⁵ v per year (up to 1000 astro. v)

trigger spectroscopic classification based on neutrino alerts? → would produce biased SN catalog

Panstarrs detection of the SN PS16cgx

- > follow-up of HESE event: E>130 TeV, error circle 0.77(°)²
- > typically 10-20 extragalactic transients with m_i<22.5</p>
- > quick initial follow-up observations:
 - > rule out old candidates
 - > rule out candidates that are not yet present
- > need spectroscopic time to verify nature of faint counterpart candidates

Panstarrs detection of the SN PS16cgx

- > 19 candidates within 90% error circle:
 - > 10 likely QSOs
 - > 5 old SNe
 - > 3 stars
 - > 1 young SN
- > potential type Ic broad-line SN (associated with GRBs, could have choked jet)

- > two spectra and multiband light curve are consistent with either a SN Ic broadline or a type Ia SN
- > SNe Ia are ~20 times more frequent \rightarrow likely a chance coincidence

Summary

- > most high-energy astrophysical neutrinos come from unknown sources
- > the average source of a single neutrino is distant (at a few Gpc)
- > observing many alerts improves the chances of a detection
- > different strategies for telescope classes:
 - telescope network: rapid follow-up
 - medium-size telescopes: observed many alerts or stacked search
 - large telescopes: high-quality observations of most significant alerts
- > photometric detection of a counterpart is not sufficient: need spectroscopy, a well sampled light curve and for some source classes a precise explosion date

Potential neutrino sources

Emission time scales

Tidal disruption events ~1d - 100d

Supernovae

~100d

Active galactic nuclei ~1h - 10d

Gramma ray bursts

~10s -100s

