Supernova follow-up strategy for IceCube neutrino events

Masaomi Tanaka (Tohoku University) on behalf of Subaru/HSC transient WG Yasuda, MT, Tominaga+19, arXiv:1904.09697

Why supernovae (SNe)? See talks by Xiang-Yu Wang and Zhuo Li

Blazars' contribution to the diffuse neutrino flux

See talks by Xiang-Yu Wang and Zhuo Li

Supernova with chocked jet?

=> Observed as low-luminosity gamma-ray bursts (GRBs)?
=> Special type of supernovae?

"Broad-line" supernovae

~1% of core-collapse SNe

c.f. Long GRBs (~0.1 % of core-collapse SNe)

Can we conclude that such SNe are the origin of IceCube neutrinos?

We need to

- identify certain types of SNe in the localization area
- exclude a chance coincidence

Electromagnetic emission from supernovae

Magnitude

$$m = -2.5 \log_{10}(F_{\nu}) - 48.6$$

= $-2.5 \log_{10} \left(\frac{F_{\nu}}{3631 \times 10^{-23} \text{ erg s}^{-1} \text{ Hz}^{-1} \text{ cm}^{-2}} \right)$

*Absolute magnitude: magnitude at 10 pc distance

Challenges in identifying SNe as neutrino sources

	Redshift	Distance	SN brightness	
Singlet	z ~ 1	7 Gpc	26 mag	8m telescope!!
Doublet	z ~ 0.06	280 Mpc	19 mag	1m telescone
Triplet	z ~ 0.02	90 Mpc	17 mag	

Strategy for multiplet event is straightforward

IceCube-160217 (triplet, z ~< 0.05)

*32% probability of a chance alignment of background

Number of unrelated SNe in 1 degree at 100 Mpc ~ 0.05

Strategy for singlet event

~ 26 mag if SN is the counterpart => need 8m class telescope

Subaru/Hyper Suprime-Cam

3t !

104 CCDs ~ 900 Mpix

2 GB/image ~300 GB/night

Field of view vs sensitivity

Subaru HSC transient surveys (~26 mag sensitivity)

HSC16aasd (nonla, z=0.19)

HSC17bqai (la, z=0.38)

HSC17bjyn (la, z=0.63)

HSC17bigx (la, z=1.00)

HSC16aqfi (la, z=1.25)

HSC17aydg (la, z=1.45)

HSC17cbcd (la, z=0.87)

HSC16adga (SLSN, z=2.40)

Yasuda, MT, Tominaga+19, arXiv:1904.09697

~1800 SNe in 0.5 yr (~6 deg²)

1 deg

~50 SNe / deg² / 1 visit (c.f. ~500,000 objects / deg²)

Yasuda, MT, Tominaga+19

1 deg

Redshift distribution

How many supernovae in 1 visit (26 mag)?

$N \sim RV\Delta t f_{\Omega} \sim 10 \left(\frac{R}{10^5 \text{ Gpc}^{-3} \text{ yr}^{-1}}\right) \left(\frac{V}{100 \text{ Gpc}^3}\right) \left(\frac{\Delta t}{20 \text{ days}}\right) \left(\frac{\Omega}{1 \text{ deg}^2}\right)$							
Туре	M _{abs} (mag)	Z _{max}	Δt (days)	Local rate (Gpc ⁻³ yr ⁻¹)	N (deg ⁻²)	N (deg ⁻²)	
la	-19	1.3	20	0.3 x 10 ⁵	10 - 30	0.01	
ll (H-rich)	-17	0.7	50	0.7 x 10 ⁵	10 - 30	0.05	
lln (CSM)	-18	1.0	50	0.1 x 10 ⁵	4 - 12	0.007	
lbc (H-free)	-17	0.7	20	0.2 x 10 ⁵	1 - 3	0.006	
Broad line (hypernova)	-18	1.0	20	0.01 x 10 ⁵	0.2 - 0.6	0.0003	
For IceCube-170922A							

0.15 deg² (50 %) and 0.97 deg² (90%)

Local rate x 3

How to identify broad-line SNe at z ^ (among >10 of Type Ia/II SNe)

(1) Photometric classification

Need good time sampling cadence of 2-3 days continuous monitoring for ~50 days

Need color information
>= 3 filters
(no redshift information in advance)

(2) Spectroscopic confirmation
 Need realtime spectroscopy
 Multi-object spectroscopy? (Subaru/PFS)
 30m-class telescope (late 2020?)

How to estimate the explosion date?

~5 days uncertainty should remain for objects at z ~ 1

Number of unrelated broad-line SNe in a window of Δt ~ 5 day ~ 0.05-0.15 / deg²

* Contamination becomes higher if neutrino emission lasts longer (dense material around Type IIn or IIP SNe, see Zhuo Li's talk)

Drout et al. 2011

Summary: strategy to identify SNe as neutrino sources

- Multiplet events (z < 0.1)
 - Follow-up with 1-2m telescopes => spectroscopy
 - Low contamination
- Singlet events (z ~ 1)
 - Deep observations (~26 mag w/ Subaru/HSC and LSST)
 - High probability, but high contamination
 - Moderate observations (22-24 mag w/ 2-4m class telescopes)
 - Low probability, but low contamination
- IceCube-Gen2
 - Better sensitivity => more multiplet
 - Better localization => lower contamination (needs ~0.1 deg)