Gyrokinetic Simulation of Fusion and Space Plasmas

Tomo-Hiko Watanabe Department of Physics, Nagoya University

> watanabe.tomohiko@nagoya-u.jp www.p.phys.nagoya-u.ac.jp

Outline

Introduction

- Research target, motivations for gyrokinetics
- Fluid and kinetic equations
- Gyrokinetic equations and simulation models
 - Gyrokinetic ordering and δf and full-f GK equations
 - Basic properties of the gyrokinetic equations
- Applications to plasma turbulence
 - Solar wind turbulence and cascades on the phase space
 - Zonal flow and turbulence controle in fusion plasmas
 - Multi-scale turbulence simulation on HPC

Introduction

Strong turbulence and transport in

magnetized plasma

• Strong turbulence drives the particle and heat transport, if mean gradients of n and/or T exist in magnetic fusion plasma.

Research targets of gyrokinetics

are ...

- Low frequency ($\omega << \Omega_{\rm i}$) waves and instabilities in magnetized plasma
 - Alfven waves, drift waves, MHD and drift wave instabilities, micro-tearing mode ...
- Turbulent transport of particle, heat, and momentum driven by the low-frequency waves
 - Anomalous transport in fusion and space plasmas
- Energy conversion through plasma kinetic processes
 - Particle acceleration, heating, and dissipation
 - Magnetic reconnection, ...

Motivations - Why do we need kinetic approaches?

• A set of fluid equations, such as MHD equations, represent conservation of mass, momentum, and energy:

$$\frac{d\rho}{dt} = -\rho \nabla \cdot \boldsymbol{v}, \qquad \frac{d\boldsymbol{v}}{dt} = -\nabla p + \boldsymbol{j} \times \boldsymbol{B}, \qquad \frac{dp}{dt} = -\gamma \nabla \cdot \boldsymbol{v}$$

- Only fluid quantities, i.e., the charge and current densities, are used in the Maxwell equations ...
- Insufficient to describe the collisionless plasma?
- Where is a flaw?

Fluid approximation may break down in high temperature plasmas

- Fluid approximation can be valid for L
 > λ_{ii}: mean-free-path (// to B)
 > ρ_i: gyro-radius (perpendicular to B)
- In fusion plasmas of $T_i \sim 10 \text{ keV}$, $n \sim 10^{14}/\text{cc}$, $v_{ii} \sim 10^2 \text{ s}^{-1}$, $\lambda_{ii} \sim 10^4 \text{ m}$, $a \sim 1 \text{m}$, $qR_0 \sim 10 \text{m}$ Thu, the Knudsen number λ_{ii} / $qR_0 \sim 10^3 \text{ !!}$
- How large is λ_{ii} in the Earth's magnetosphere? $\lambda_{ii} \sim O(10^8 \text{ km}) !!$ (for $T_i \sim 10 \text{ eV}$, $n \sim 5/\text{cc}$)

Start from the Vlasov equations

• Advection of *f* along particle trajectories in the phase space (Hamiltonian flow),

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f + \frac{q}{m} (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f}{\partial \boldsymbol{v}} = 0$$

or

$$\frac{\partial f}{\partial t} + \{H, f\} = 0$$

includes a variety of kinetic effects, i.e., Landau damping, particle trapping, finite gyroradius effects, ...

• Coupling to higher-order moments is generated by the advection term, $v \cdot \nabla f$.

Moments of Vlasov equations

• Define the *N*th-order moment of *f* as

$$M^{(N)}_{\alpha\beta\ldots\tau}\equiv\int f v_\alpha v_\beta\ldots v_\tau d^3v$$

Taking the Nth moment of the Vlasov equation, one finds

$$\frac{\partial M_{\beta\dots\tau}^{(N)}}{\partial t} + \frac{\partial M_{\alpha\beta\dots\tau}^{(N+1)}}{\partial x_{\alpha}} - \frac{q}{m} \left\| E_{\beta} M_{\gamma\dots\tau}^{(N-1)} \right\|_{\beta} - \dots = 0$$

where

$$\left\|A_{\alpha}B_{\beta\gamma\ldots\tau}\right\|_{\alpha} = A_{\beta}B_{\alpha\gamma\ldots\tau} + A_{\gamma}B_{\beta\alpha\ldots\tau} + \dots + A_{\tau}B_{\beta\gamma\ldots\alpha}$$

We need a closure model to complete a set of fluid equations

- Equation for $M_{\alpha\beta...\sigma}^{(N)}$ involves the higher-order moment, $M_{\alpha\beta...\tau}^{(N+1)}$.
- To truncate the moment hierarchy at N, $M_{\alpha\beta...\tau}^{(N+1)}$ should be modeled by means of lower-order moments, $M^{(0)}$, $M_{\alpha}^{(1)}$, ..., $M_{\alpha\beta...\sigma}^{(N)}$.
 - c.f. Ideal fluid models often neglect the heat flux, *i.e.*, the 3rd-order moment.
- How is it justified ?

Closure model needs to be

validated in comparison with f

- Simple closure models: adiabatic, CGL model
 - The heat flux vanishes for $f = F_M$, which is the simplest closure for ideal fluids.
- Hammett-Perkins (Landau fluid) closure is designed to mimic the Landau damping.
- Taking the fluid moments of *f* is equivalent to projection of *f* onto a polynomial basis of the velocity space, e.g. Hermitian polynomial expansion.
 - Higher-order moments are related to finer-scale structures of *f*.
- Closure models introduce coarse-graining of fine structures of *f*.

How does the distribution function develop in the phase space?

- Nonlinear Landau damping in 1-D Vlasov-Poisson system, where $f(x, v, t = 0) = F_M(1 A \cos kx)$
- Fine structures of *f* continuously develop
 - Ballistic modes with scale-lengths of 1/kt in v-space
 - Stretching of *f* due to shear of the Hamiltonian flow

Thus, we need kinetic descriptions

- In high-temperature plasma,
 - Collisionality is quite low.
 - Mean-free-path >> system size
 - Distribution function can be far from F_M .
- Construction of closure models for a collisionless regime is still in progress, e.g., FLR closure
- We need to deal with the kinetic equation of *f* on multi-dimensional phase space...

Gyrokinetic equations and simulation models

Kinetic model should be simplified for low-frequency phenomena

- Although the Vlasov equation is "the first principle" for describing collisionless plasma behaviors, it involves short time scale of Ω_i^{-1} , Ω_e^{-1} , ω_p^{-1} ...
 - In a magnetic fusion plasma with B = 1T, $\Omega_i = \frac{eB}{m_i} \sim 1 \times 10^8 \text{ [rad} \cdot \text{sec}^{-1}\text{]}$
- We need reduced kinetic equations to eliminate the fast gyro-motion as well as ω_p , while keeping finite gyro-radius and other kinetic effects.

=> Gyrokinetic equations

From Vlasov to gyrokinetic eqs.

• To deal with fluctuations slower than the gyro-motion, reduce the Vlasov equation to a gyro-averaged form:

- Gyrokinetic ordering and perturbation expansion $\varepsilon \sim \frac{\omega}{\Omega} \sim \frac{\rho}{L} \sim \frac{k_{\parallel}}{k_{\perp}} \sim \frac{\delta f}{f_0} \sim \frac{e\phi}{T} \sim \frac{\delta B}{B_0}$, $f = f_0 + \delta f$
 - Recursive formulation of linear gyrokinetic equations [Rutherford & Frieman (1968); Antonsen & Lane (1980)]

Perturbed gyrokinetic equation

- Gyrocenter coordinates $(X^{(g)}, v_{\parallel}, \mu, \xi)$
 - μ : magnetic moment, ξ : gyrophase
- Particle and gyrocenter distributions $\delta f_{sk}^{(p)}$ and $\delta f_{sk}^{(g)}$

$$\delta f_{\mathbf{k}_{\perp}}^{(p)} = \delta f_{\mathbf{k}_{\perp}}^{(g)} \underbrace{\exp(-i\mathbf{k}_{\perp} \cdot \boldsymbol{\rho})}_{\text{difference of particle}} - \underbrace{\frac{e\varphi_{\mathbf{k}_{\perp}}}{T}}_{F_{M}} F_{M} \left[1 - J_{0}\left(k_{\perp}\boldsymbol{\rho}\right)\exp(-i\mathbf{k}_{\perp} \cdot \boldsymbol{\rho})\right]$$

difference of particle position and gyrocenter

EASW2016@Tsukuba

polarization

 $X^{(g)}$

• Nonlinear gyrokinetic equation for
$$\delta f_s^{(g)}$$

$$\begin{bmatrix} \frac{\partial}{\partial t} + v_{\parallel} \mathbf{b} \cdot \nabla + \mathbf{v}_{ds} \cdot \nabla - \frac{\mu_s}{m_s} \mathbf{b} \cdot \nabla B \frac{\partial}{\partial v_{\parallel}} \end{bmatrix} \delta f_s^{(g)} + \frac{c}{B_0} \left\{ \Phi - \frac{v_{\parallel}}{c} \Psi, \delta f_s^{(g)} + \frac{e_s \varphi}{T_s} \right\}$$
Magnetic ms Mirror force $= -v_{\parallel}F_{0s}\frac{e_s}{T_s} \left(\mathbf{b} \cdot \nabla \Phi + \frac{1}{c}\frac{\partial \Psi}{\partial t} \right) + F_{0s}\frac{e_s}{T_s} \left[\mathbf{v}_{*s} \cdot \nabla \left(\Phi - \frac{v_{\parallel}}{c} \Psi \right) - \mathbf{v}_{ds} \cdot \nabla \Phi \right]$
[Friemann & Chen, '82] Parallel electric field Diamagnetic drift

2016/7/13

Gyrokinetic Poisson equation and Ampere's law

• Fluctuations of the electrostatic potential are given by the quasi-neutrality condition,

$$\sum_{s} e_s \int J_0(k_\perp \rho_s) \delta f_{sk_\perp}^{(g)} d^3 v - n_0 \sum_{s} \frac{e_s^2 \phi_{k_\perp}}{T_s} \Big[1 - e^{-k_\perp^2 \rho_{ts}^2} I_0(k_\perp^2 \rho_{ts}^2) \Big] = 0$$

Difference of $X^{(g)}$ and $X^{(p)}$ Polarization of backgrounds

Polarization of backgrounds • Fluctuations of the flux function are calculated from the Ampere's law,

$$k_{\perp}^{2}\psi = \frac{4\pi}{c}\sum_{s}e_{s}\int v_{\parallel}\delta f_{s\mathbf{k}_{\perp}}^{(g)}d^{3}v$$

• The finite gyroradius effect is also taken into account,

$$\begin{cases} \Phi_{k_{\perp}} = J_0(k_{\perp}v_{\perp}/\Omega_s)\phi_{k_{\perp}} & \text{Effective potential} \\ \Psi_{k_{\perp}} = J_0(k_{\perp}v_{\perp}/\Omega_s)\psi_{k_{\perp}} & \text{acting on gyrocenters} \end{cases}$$

EASW2016@Tsukuba

A different form of GK equation preserving the phase-space volume

• Fast gyromotion is eliminated by the Lie transform to gyrocenter coordinates and the gyrophase average [Littlejohn, 1979, '81, '82, '83]

$$\frac{\mathrm{D}\bar{f}_{s}}{\mathrm{D}t} \equiv \frac{\partial \bar{f}_{s}}{\partial t} + \{\bar{f}_{s}, \bar{H}_{s}\} \qquad \overline{f}_{s}(\bar{\mathbf{R}}, \bar{u}, \bar{\mu}) \qquad \text{Gyrocenter Hamiltonian:} \\
= \frac{\partial \bar{f}_{s}}{\partial t} + \frac{\mathrm{d}\bar{\mathbf{R}}}{\mathrm{d}t} \cdot \frac{\partial \bar{f}_{s}}{\partial \bar{\mathbf{R}}} + \frac{\mathrm{d}\bar{u}}{\mathrm{d}t} \frac{\partial \bar{f}_{s}}{\partial \bar{u}}, \qquad \mathrm{Gyrocenter Hamiltonian:} \\
\bar{H}_{s} = \frac{1}{2}m_{s}\bar{u}^{2} + \bar{\mu}B_{0} + e_{s}\langle\Psi\rangle_{\bar{\xi}}. \\
\qquad \text{Independent of the} \\
\qquad \text{gyrophase angle } \xi \\
\qquad \text{Adiabatic invariant: } \bar{\mu}$$

 $+\frac{B^*}{m_s B^*_{\scriptscriptstyle \rm II}}\cdot \left(\nabla F\frac{\partial G}{\partial u}-\frac{\partial F}{\partial u}\nabla G\right)-\frac{c}{e_s B^*_{\scriptscriptstyle \rm II}}b\cdot\nabla F\times\nabla G,$

 $\{F, G\} \equiv \frac{\Omega_s}{B_0} \left(\frac{\partial F}{\partial \xi} \frac{\partial G}{\partial \mu} - \frac{\partial F}{\partial \mu} \frac{\partial G}{\partial \xi} \right)$

[Hahm, 1988; Brizard, 1989]

Poisson brackets

2016/7/13

EASW2016@Isukuba

Basic properties of gyrokinetics

- Suitable to describe time-varying fluctuations slower than the cyclotron period, Ω_s^{-1}
- Introduction of finite gyroradius effects

Gyrocenter effectively feels the potential averaged over the gyro-orbit

Electric

Particle density at x is given by sum of particles with different gyrocenter positions $X^{(g)}$, of which orbits are polarized by the electric field

EASW2016@Tsukuba

More advantages of gyrokinetics

- Parallel electric field involved in GK can describe
 - Landau damping, drift instabilities, particle acceleration, and magnetic reconnection
- Strong anisotropic fluctuations of $k_{\parallel} \ll k_{\perp}$ are resolved.
 - Consistent to the flute ordering in MHD
- Small amplitude fluctuations of $e\phi \ll T$ can be considered.
- Magnetic and diamagnetic drift and mirror motions are included.
- Polarization term modifies the plasma dielectricity.

Three approaches in GK simulation

- PIC model combined with δf -method
 - Compute motion of charged rings [Lee, 1987]
 - Time-varying weight function describing δf [Dimtis+, 1993]
- Vlasov approach
 - Solve the GK equations on grids or spectral methods
 - δf and full-f methods; local flux tube and global models
- Semi-Lagrangian method
 - Compute mappings of *f* with interpolations

Solar wind turbulence and cascades on the phase space

How does the dissipation work in the solar wind turbulence?

- Mean flow energy
 => Turbulence energy
- Turbulence spectrum from the MHD scale to the ion or electron gyroscales (assuming Taylor's frozen hypothesis).
- Spectrum in the inertial subrange can be given by reduced MHD or EMHD
- Dissipation process?
- Electron / ion heating?

Direct simulation by GK

- Forced GK turbulence with ion and electron fluctuations
- Roughly consistent with observations and dimensional analysis => MHD or EMHD
- Multi-scale turbulence including ions and electron gyroradii
- Mixing process in the phase space is important

26

Drift wave turbulence in simple

slab geometry with uniform B₀

- A simple test problem with fixed gradients of density and temperature normal to the confinement field
- Drift wave turbulence and transport driven by ion

Turbulence cascades from macro to micro-scale velocity space

- Small scale structures of the perturbed distribution function δf continuously develops in the velocity space
- Turbulence intensity spectrum on the phase space

2016/7/13

EASW2016@Tsukuba

Velocity-space spectral analysis for kinetic plasma turbulence

• Hermite polynomial expansion of $\delta f_{\mathbf{k}}(v) = \sum_{n=0}^{\infty} \hat{f}_{\mathbf{k},n} H_n(v) F_M(v)$ gives the "entropy" transfer equation $\frac{d}{d} \left[\delta S_n + \delta_{n-1} \frac{1}{2} \sum_{n=0}^{\infty} |\phi_{\mathbf{k}}|^2 \{2 - \Gamma_0(b_{\mathbf{k}})\} \right]$ Entropy variable: $\delta S = \left\langle \int \frac{|\delta f|^2}{2F_M} dv \right\rangle$

production

n=2

$$\frac{d}{dt} \left[\delta S_n + \delta_{n,1} \frac{1}{2} \sum_{\mathbf{k}} |\phi_{\mathbf{k}}|^2 \{ 2 - \Gamma_0(b_{\mathbf{k}}) \} \right]$$

$$= I - \int_{\mathbf{k}} |\phi_{\mathbf{k}}|^2 \{ 2 - \Gamma_0(b_{\mathbf{k}}) \}$$

$$= J_{n-1/2} - J_{n+1/2} + \delta_{n,2} \eta_i Q_i - 2 \nu n \, \delta S_n \, ,$$

• Transfer function is defined by

$$J_{n+1/2} = \sum_{\mathbf{k}} \Theta k_y(n+1)! \operatorname{Im}(\hat{f}_{\mathbf{k},n} \hat{f}_{\mathbf{k},n+1}^*),$$

Watanabe & Sugama, PoP 2004

2016/7/13

EASW2016@Tsukuba

n+1

dissipation

 $\delta S_n \equiv \sum_{\mathbf{k}} \delta S_{\mathbf{k},n} \equiv \sum_{\mathbf{k}} \frac{1}{2} n! |\hat{f}_{\mathbf{k},n}|^2,$

n

transfer

*n-*1

"Inertial sub-range" is discovered also in the velocity-space

• Constant profile of the transfer function *J_n* shows an intermediate scale free from "entropy" production and dissipation

EASW2016@Tsukuba

Watanabe & Sugama, PoP 2004

Zonal flows and turbulence control in fusion plasmas

Zonal Flows in Nature

Zonal Flows in Jupiter

Differential Rotation in Sun

2016/7/13

Zonal Flows and Turbulence in Fusion Plasma Simulations

- Zonal flows have been found in various types of plasma turbulence simulations.
 - A pioneering work by Hasegawa & Wakatani for zonal flow generation in turbulence (upper)
 - Zonal flows distorting eddies lead to turbulence regulation and transport reduction (lower left)

Hasegawa & Wakatani, PRL **59**, 1581 (1987).

with zonal flows

w/o zonal flows

Lin et al., Science **281**, 1835 (1998).

Identification of Zonal Flows in

Fusion Plasma

Zonal flow in a torus: potential fluctuations with poloidal and toroidal symmetries but with radial variations

Flux tube simulation model for

fusion plasmas

- After 20 years of the BCH paper of the toroidal flux tube model, GK simulations have largely been advanced ...
 - A variety of codes, GS2, GENE, GKW, GKV, ...
 - Widely used for theoretical and experimental studies of turbulent transport and zonal flows in fusion plasmas

Helical Field Enhancing Zonal Flow

Generation

- Helical plasma is characterized by non-symmetric confinement field
- Radial drift motion of helicalripple-trapped particles leads to shielding effect of zonal flow.
- Theory and simulation suggest increase of zonal flow response (to a source) in optimized helical confinement field

=> Enhancement of zonal flow generation

Sugama & Watanabe, PRL 2008 Ferrando, Sugama & Watanabe, PoP 2007

Turbulence controlled by confinement field optimization via zonal flows

• Strong zonal flows generated by optimizing particle orbits in the helical field lead to further reduction of ion heat transport

Watanabe, Sugama, Ferrando-Margalet, PRL 2008

Multi-scale turbulence simulation on HPC

High Performance Computing with GKV

- Maeyama et al (2013)

 Multi-scale ITG/TEM/ETG turbulence simulations demand huge
 computational costs
 - Grids~10¹¹; time steps~10⁵; parallelization ~100k
- Improvement of strong scaling is critically important
- Optimization on K computer
 - Five-dimensional domain decomposition
 - Optimized MPI process mapping on 3D torus
 - Computation-communication overlap
- Excellent strong scaling for ~600k cores keeping 99.99994% parallelization rate

2016/7/13

EASW2016@Tsukuba

39

Gyrokinetic simulation resolving the ITG and ETG turbulence

- The flux tube code, GKV, has been applied to the direct numerical simulation of the ITG and ETG turbulence.
- The highly scalable code enables the peta-scale computing on ~100k cores of the K computer (~100hrs)
- Cyclone base case with $\beta = 2\%$ and $m_i/m_e = 1836$

Maeyama+ PRL (2015)

Transport in multi-scale turbulence: "More is different"

• Transport in the multi-scale turbulence is characterized *neither* of the ITG and ETG transport in a single-scale.

Summary

- Introduction
 - Kinetic approach is essential in descriptions of collisionless plasma behaviours
- Gyrokinetic equations and simulation models
 - Overviewed the gyrokinetic equations
 - Several advanges brought by the gyrokinetic ordering
- Applications to plasma turbulence
 - Solar wind turbulence and cascades on the phase space
 - Zonal flow and turbulence controle in fusion plasmas
 - Multi-scale turbulence simulation on HPC