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Many of the ideas on solar flares are described by cartoons, see
Hudson’s Solar cartoon archive:
http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/

In this talk I will follow the development of important ideas using
cartoons, for both solar flare and geomagnetic substorms.

http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/ 


Early history of reconnection: solar flares
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Giovanelli’s (1946, 1947, 1948) cartoons for “chromospheric flares”
describing currents, magnetic nulls and a quadrupolar magnetic
structure, respectively.



2D models: Dungey (1953)

magnetic reconnection, though the term itself was not employed until several years
later. Chapter VI, entitled ‘Hoyle’s Theory of the Aurora Polaris’, then applied
these ideas to the Earth’s environment, and contained the first description of the
reconnection model, including flux transport through the system driven by the flow
of the solar stream, as well as acceleration of particles near the neutral points
discussed along similar lines to those outlined by Hoyle above. However, only
the first of these topics was subsequently ‘written up’ for publication (Dungey 1953,
1958a, b), which we now discuss here, while the reconnection model itself did not
re-emerge for almost a decade, discussion of which is thus deferred to the following
section.

The magnetic structure considered is shown in Fig. 1.1, taken from Dungey
(1958b), in which the heavy curved lines are magnetic field lines, such that the
current implied by Ampère’s law is directed into the diagram. The lighter lines
marked ‘f’ then show the directions of the j! B force on the fluid, which, it was
argued, will then flow in the same general direction as this force, causing the frozen-
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Fig. 1.1 Sketch of
magnetic field lines, shown
by the heavy arrowed lines,
in the vicinity of a magnetic
neutral point, N, with an
electric current directed into
the plane of the diagram.
The curved arrows marked
‘f’ show the direction of the
j! B force on the plasma,
which tends to make the
plasma move in the same
direction. From Dungey
(1958b)

1 Dungey’s Reconnection Model of the Earth’s Magnetosphere: The First 40 Years 5

Dungey (Phil. Mag. 44, 725, 1953) initi-
ated the development of recon-
nection models. The figure is
from Dungey’s (1958) book. The
curved arrows labeled f indicate
the direction of plasma flow. In-
dividual magnetic field lines flow
with the plasma. The overall pat-
tern does not change with time.

Model is an X-type neutral point.

Magnetic reconnection is an intrinsically time-dependent problem,
and must involve an inductive electric field.
All reconnection model are time-independent.



2D models: Sweet-Parker
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averaged analysis. A significant finding is that the observed
reconnection rate can be explained by a generalized Sweet-
Parker model which includes compressibility, downstream
pressure, and the effective resistivity. The latter is signifi-
cantly enhanced over its classical values in the collisionless
limit.

Arrangement for the other sections is as follows. In Sec.
II, a brief derivation of the Sweet-Parker model is given. In
Sec. III, experimental apparatus of MRX including major
diagnostics are described. After the presentation of the main
results in Sec. IV, implications of the results will be dis-
cussed in Sec. V, followed by conclusions in Sec. VI.

II. THE SWEET-PARKER MODEL

A key element of the Sweet-Parker model is the exis-
tence of a ‘‘diffusion region’’—essentially a rectangular box
where the magnetic field diffuses and reconnects, as illus-
trated in Fig. 1. The dimensions of such a ‘‘box’’ are of
crucial importance since it essentially decides the rate of
magnetic reconnection by balancing incoming and outgoing
plasma and flux flow and thus the time scale for reconnec-
tion. The length of this box is of macroscopic scale, but its
width is determined by the local plasma resistivity which
causes magnetic diffusion; i.e., faster reconnection occurs
with larger resistivity. The Sweet-Parker model uses resistiv-
ities estimated by classical theories, such as the Spitzer
resistivity.18

The motion of magnetic field lines in a MHD plasma
with resistivity h is described by

]B
]t 5“3~V3B!1

h
m0

π2B, ~1!

where V is the flow velocity. The first term on the right-hand
side represents the effect of plasma convection whose time-
scale is the Alfvén time tA5L/VA , where L is the plasma
size ~or the length of diffusion region in the case of magnetic
reconnection! and VA[B/Am0r ~r5mass density! is the
Alfvén speed. The second term describes field line diffusion
the time-scale of which is the diffusion time tR5m0L2/h .
The relative importance of magnetic diffusion to plasma con-
vection is given by the Lundquist number S defined by
tR /tA5m0LVA /h . For typical MHD plasmas such as solar
flares,4 S.1010; for tokamaks, S.107; and for MRX plas-
mas, S&103.

Another important equation governing reconnection is
the continuity equation,
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where d is the thickness ~or width of the diffusion region! of
the current sheet as shown in Fig. 1 and n̄ is the averaged
density in the diffusion region. Figure 1 also indicates VR
(VZ) as plasma flow speed across ~along! the diffusion re-
gion. These flows are in the radial ~R! and axial ~Z! direction,
respectively, reflecting the geometry in MRX ~see the next
section!.

The last relevant equation is the equation of motion,
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Integration of this equation, ~i.e., the R component across the
current sheet and the Z component along the current sheet!
gives
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where p0 , pup and pdown are plasma pressures at the center
and in the upstream and downstream regions, respectively.
The last terms on both sides represent the magnetic tension
forces.

The original Sweet-Parker model7,8 assumes steady-state
reconnection ~]B/]t50, ]V/]t50! in an incompressible
plasma (“•V}] n̄/]t50) with uniform pressure outside the
diffusion region (pup5pdown) and with negligible rVR

2 /2,
BR
2 /2m0 , and tension forces. Then Eqs. ~1!, ~2! and ~4! can
be reduced to VR5h/m0d , VR5(d/L)VZ and VZ5VA , re-
sulting in a simple expression for the reconnection rate as
measured by the Alfvén Mach number, MA[VR /VA
5Ah/m0LVA51/AS . Therefore, a characteristic time given
by the model is tSP5L/VR5L/VAAS5AtAtR.

III. EXPERIMENTAL APPARATUS AND DIAGNOSTICS

Since a detailed description of the MRX device has been
given in a previous paper,17 only major relevant parts are
briefly mentioned here. When a plasma is inductively formed
by two internal coils ~called the flux cores! in a quadrupole
field configuration, the magnetic field domain can be divided
into three sections: two private sections surrounding each
flux core and one public section surrounding both flux cores
@see Fig. 2~a!#. When poloidal flux in the private sections is
reduced, the poloidal flux is ‘‘pulled’’ back from the public
section to the private sections resulting in magnetic recon-
nection as shown in Fig. 2~b!. Toroidally symmetric shape of
the flux cores ensures global 2D geometry for magnetic re-
connection.

The low temperature ~,50 eV! and short-pulsed ~,1
msec! MRX plasmas have the advantage that internal probes
can be used routinely. Triple Langmuir probes are used to

FIG. 1. An illustration of the Sweet-Parker model.

1744 Phys. Plasmas, Vol. 6, No. 5, May 1999 Ji et al.

Left: Sweet (1958) presented a “neutral point theory for solar
flares”; cartoon shows extended vertical neutral point/plane.
Right: In the Sweet-Parker model reconnection occurs in a current
sheet. Reconnection occurs by oppositely directed magnetic field
lines diffusing together and annihilating.
For L� δ reconnection is far too slow to explain a solar flare.



2D models: Petschek

Petschek’s (1964) model allows much faster reconnection.
Reconnection is confined to a tiny region, and the reconnected
field and plasma are transported away by slow-mode shocks.



2D models: tearing instability

In laboratory plasma physics it was recognized that a current sheet
with finite conductivity is unstable to a tearing mode.

(Furth, Killeen & Rosenbluth: 1963, Phys. Fluids, 6, 459, 1963)

– 12 –

a

Fig. 1.— A schematic of a reconnection region.The current (flowing perpendicular to the page) in a sheet breaks
up into current lines, along the centers of the magnetic bubbles.



2D models: “standard” flare model

Version of CSHKP model for a solar flare (McKenzie 2002).
Reconnection occurs in a current sheet similar to Sweet (1958).



Early history of reconnection: open magnetosphere
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INTERPLANETARY MAGNETIC FIELD AND THE AURORAL ZONES

J. W. Dungeyf
Ionosphere Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania

(Received November 10, 1960; revised manuscript received December 22, 1960)

The discovery' of a regular interplanetary mag-
netic field by Pioneer V has reawakened interest
in Hoyle's' suggestion that the primary auroral
particles are accelerated at neutral points in the
combination of an interplanetary field and the
geomagnetic field. Hoyle pointed out that the
latitude of the aurora would depend on the dis-
tance of the neutral points from the earth and
hence on the interplanetary field strength in the
observed sense. The estimated particle energy
was also reasonable. Dungey' discusses the ac-
celerating mechanism. Here a qualitative model
of the whole field is outlined and is found to be
confirmed by the observed S& current system.
Consider a model with interplanetary plasma

moving relative to the earth, this "wind" lying
approximately in the ecliptic plane, and an inter-
planetary field pointing roughly southward. The
problem with no interplanetary magnetic field
has been studied by several authors, 4 but the
inclusion of this field alters the problem radically.
The basic and awkward problem is that of the
flow of plasma round the earth. This has not
been solved but will be sketched using the physi-
cal picture of hydromagnetics. The flow in a
plane containing the neutral points is shown in
Fig. 1. The flow near the neutral points is con-
trolled by the strong current density existing
there (3). The reverse flow between the neutral
points is important; it has to flow round the
earth, but does so in a normal aerodynamic way.
A steady laminar flow will be assumed here for
simplicity, but it should be noted that large var-
iations of the field were detected by Pioneer I.'

Denoting the local wind velocity by u, the electric
field E is approximately -u&&H/c everywhere
outside the ionosphere except near the neutral
points. In a steady state E has a potential, which
is constant on a line of force, with the same ex-
ceptions. Far from the earth E points out of the
paper and the dir ection is still much the same
near the neutral points and in the equatorial part
of the region of reverse flow. In order to deduce
the ionospheric currents, the topology of the
magnetic field must be considered.
In Fig. 1 there will be two lines (not in the

plane shown) connecting the neutral points and
together forming an approximately circular
closed curve C near the equatorial plane. The
lines from one neutral point will cover a surface,
topologically similar to half a cylinder, extend-

LINE OF FORCE~ DIRECTION OF FLOW

FIG. 1. Interplanetary plasma flow in a plane con-
taining neutral points.

Copyright 1961 by the
American Physical Society

Fig. 1.2 Sketches of the field and flow in the reconnection model of the magnetosphere, showing
the noon-midnight meridian plane with the solar wind blowing from left to right. Panel (a) shows
the flow in the vicinity of the neutral points N1 and N2 resulting from reconnection in their vicinity,
while panel (b) shows the time history of a given interplanetary field line. From Dungey (1950)

8 S.W.H. Cowley FRS

Dungey (PRL 6, 47) (1961) presented a model for the magnetosphere
with reconnection between the Earth’s magnetic field and the
interplanetary magnetic field at two points. This model already
appeared in Dungey’s PhD thesis in 1950.



2D models: dipolarization in the magnetotail

transient reconnection producing ‘flux transfer events’ had been reported by Russell
and Elphic (1979).

A second topic involved further development of ideas concerning the depen-
dence of magnetospheric structure and flow on the direction and strength of the
IMF. The first detailed observations of electric fields over the polar regions
obtained by the OGO-6 spacecraft in 1969 had shown that the E! B flow is indeed
usually of twin-vortex form compatible with the SD current system, but that there
are also strong dawn-dusk asymmetries depending on the east-west component of
the interplanetary field, IMF By, that have opposite senses in the northern and
southern hemispheres (Heppner 1972). Cowley (1981a), updated by Cowley
et al. (1991), showed that the ensemble of such effects observed in the dayside
cusp, polar flows, auroral zone location, and plasma mantle that had been observed
up to those times results from the east-west tension forces on open flux tubes
associated with IMF By, opposite in opposite hemispheres, as sketched (specifically
for IMF By positive) in panel (a) of Fig. 1.9. This results in asymmetric addition of
open flux tubes to the tail lobes as sketched in panel (b) of the figure, where for IMF
By positive open flux is added preferentially to the dawn side of the northern lobe,
and to the dusk side of the southern lobe (and vice-versa for IMF By negative). Since

Fig. 1.8 Noon-midnight meridian cross-section through the Earth’s magnetosphere, where the
arrowed solid lines show magnetic field lines, while the dashed lines show the bow shock and
magnetopause as marked. The coloured dots show the principal plasma populations originating in
the solar wind (green) and the Earth’s ionosphere (blue). Both sources contribute to the hot plasma
sheet population located at the centre plane of the tail (red). From Cowley et al. (2003) (Color
figure online)

22 S.W.H. Cowley FRS

Version of standard model for reconnection in the Earth’s
magnetotail (Cowley 2015).



Enhanced reconnection: anomalous resistivity
The rate of reconnection can be greatly enhanced by appealing to
anomalous conductivity. (Kulsrud, Earth Planets Space, 53, 417, 2001)

Anomalous conductivity is attributed to a current driven (kinetic)
instability that generates longitudinal waves; these waves scatter
the current-carrying electrons, impeding the flow of current.

The anomalously conducting region is confined to a tiny volume
compared with the volume of flaring region—ratio of scale lengths
of order 10−6.

Kulsrud (2001) argued that both Sweet-Parker and Petschek
reconnections are enhanced when anomalous conductivity is
assumed uniform, and that Petschek reconnection is strongly
favored for (as expected) localized anomalous conductivity.



Enhanced reconnection: turbulence
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FIG. 1.ÈGeometry of magnetic Ðeld lines in three-dimensional recon-
nection. The reconnected lines stretch and carry the conducting plasma
with them. The plasma is also redistributed along the Ðeld lines.

model oppositely directed magnetic Ðelds are brought into
contact over a region of size Magnetic Ðelds reconnectL

x
.

along a very thin Ohmic di†usion layer andL
y
B g/Vrec,Ñuid is ejected from this layer at a velocity of order in aVAdirection parallel to the local Ðeld lines. The layer in which

Ohmic di†usion takes place is usually referred to as the
current sheet. Here we will refer to the volume where the
mean magnetic Ðeld strength drops signiÐcantly as the
reconnection zone, in order to allow for the presence of
collective e†ects that may broaden the reconnection zone

FIG. 2.È(a) Structure of the reconnection region when the Ðeld is turb-
ulent. Local reconnection events happen on the small-scale rather thanj

Aand this accelerates reconnection. The plasma is redistributed along theL
xÐeld lines in a layer of thickness Sy2T1@2, which is much thicker than the

region from which the ejection of the magnetic Ðeld takes place.Dj
M(b) Local structure of magnetic Ðeld lines.

well beyond the current sheet. The reconnection velocity in
the Sweet-Parker picture is determined by the constraint
imposed by the conservation of mass condition Vrec L

x
B

Although this model is two-dimensional, it can beVA L
y
.

generalized to three dimensions by allowing the two mag-
netic Ðeld regions to share a common Ðeld component,
which has the e†ect of rotating them so that they are no
longer exactly antiparallel. This has no e†ect on the Sweet-
Parker reconnection process (see Fig. 1). However, it does
change the nature of the constraint somewhat. In addition
to ejecting matter from the reconnection zone, we must also
allow for the ejection of the magnetic Ñux due to the
common Ðeld component. This is, in e†ect, the same con-
straint in this case.

We consider the case in which there exists a large-scale,
well-ordered magnetic Ðeld of the kind that is normally
used as a starting point for discussions of reconnection. This
Ðeld may, or may not, be ordered on the largest conceivable
scales. However, we will consider scales smaller than the
typical radius of curvature of the magnetic Ðeld lines, or
alternatively, scales below the peak in the power spectrum
of the magnetic Ðeld, so that the direction of the unper-
turbed magnetic Ðeld is a reasonably well deÐned concept.
In addition, we expect that the Ðeld has some small-scale
““ wandering ÏÏ of the Ðeld lines. On any given scale the
typical angle by which Ðeld lines di†er from their neighbors
is / > 1, and this angle persists for a distance along the Ðeld
lines with a correlation distance across Ðeld lines.j

A
j
MThe modiÐcation of the mass conservation constraint in

the presence of stochastic magnetic Ðeld component is self-
evident. Instead of being squeezed from a layer whose width
is determined by Ohmic di†usion, the plasma may di†use
through a much broader layer, (see Fig. 2),L

y
D Sy2T1@2

determined by the di†usion of magnetic Ðeld lines. The
value of Sy2T1@2 can be determined once a particular model
of turbulence is adopted (see ° 3), but it is obvious from the
very beginning that this value is determined by Ðeld wan-
dering rather than Ohmic di†usion as in the Sweet-Parker
case.

In the presence of a stochastic Ðeld component, magnetic
reconnection dissipates Ðeld lines not over their entire
length but only over a scale (see Fig. 2b),DL

x
j
A

> L
xwhich is the scale over which the magnetic Ðeld line deviates

from its original direction by the thickness of the Ohmic
di†usion layer If the angle / of Ðeld devi-j

M
~1 B g/Vrec,local.ation does not depend on the scale, the local reconnection

velocity would be and would not depend on resis-DVA /
tivity. We claim in ° 3 that / does depend on scale. There-
fore, the local reconnection rate is given by theVrec,localusual Sweet-Parker formulae but with instead of i.e.,j

A
L

x
,

It is obvious from Figure 2a thatVrec,local B VA(VA j
A
/g)~1@2.

magnetic Ðeld lines will undergo reconnectionDL
x
/j

Asimultaneously (compared with a one-by-one line reconnec-
tion process for the Sweet-Parker scheme). Therefore, the
overall reconnection rate may be as large as Vrec,global Bwhich means that the reconnectionVA(L

x
/j

A
)(VA j

A
/g)~1@2,

efficiency critically depends on the value of Morej
A
.

realistically, we will Ðnd that there are other global con-
straints that end up determining the actual global reconnec-
tion speed.

The relevant values of and Sy2T1@2 depend criticallyj
Aon the magnetic Ðeld statistics. Therefore, in the next

section we will brieÑy explore the expected properties of
magnetic turbulence.

(Lazarian & Vishniac, ApJ, 517, 700, 1999)

By adding MHD turbulence
to a Sweet-Parker model, the
smooth current sheet develops
a large number of magnetic
nulls. This results in turbulent
reconnection.

A weakness in existing models for reconnection is their tiny scale
compared with scales relevant to a solar flare. A statistically large
number of reconnection sites, operating simultaneously and
coupled together, is needed to explain effective reconnection on a
large scale. Turbulent reconnection is one way of achieving this.
(Lazarian et al., Phil. Trans. Roy. Soc. 373, 20140144, 1999; Huang & Bhattacharjee, ApJ, 818, 20, 2016).



3D flare models: sheared arcade

Realistic flare models require 3D reconnection. Two classes of 3D
flare model are a sheared magnetic arcade, and a quadrupolar
model involving a newly emerging flux tube.

Figure 1.1: The sketch of CSHKP model. Rising of an destabilized filament creates the
anti-parallel magnetic field below the filament, where magnetic reconnection take places.

shown in Figure 1.1, which is described in 3D for easy comparison with observed features

in Figure 1.2. Rising of a filament with MHD instability results in expanding overlying

magnetic loops and magnetic reconnection is induced in the solar corona. Hot plasmas

and accelerated particles are generated by magnetic reconnection. The thermal conduc-

tion from the hot plasma and impingement of accelerated particles gives the heat to the

chromosphere, which form chromospheric flare ribbons as shown in Figure 1.2. The tran-

sient heat inputs to the flare ribbons cause so-called chromospheric evaporation and fill

the flare loops with dense heated plasmas (Figure 1.2).

1.1.2 Energy storage, trigger, and 3D magnetic configuration

The CSHKP model answers the mechanism of energy release and captures the observa-

tional properties of many flares. However, there are several unsolved issues. One issue

is how the magnetic energy for solar flares is stored in the solar atmosphere. Second,

what mechanism triggers solar flares? Third, how many kinds of magnetic configuration

2

(Kawabata 2016)
(Freedman & Kaufmann 2008)

A sheared arcade is a 3D counterpart of a CSHKP model.



3D flare models: quadrupolar models
Newly emerging flux tube reconnects with an overlying flux tube,
producing two new flux tubes. Both magnetic flux and current
partially transferred to new flux tubes.

(Nishio et al. 1997) (Melrose 1997)

A model with magnetic flux and current conserved at all four
footpoints (Melrose 1997) shows that the change from initial to final
magnetic/current configuration releases magnetic energy if the net
length of the current path in the corona decreases.



Currents and solar flares

Magnetic free energy <=> large-scale currents
Three classes of currents

1. Currents that close below photosphere
=> potential B in corona

2. Currents that close in the corona
energetically unimportant for a flare

3. Currents that flow through the photosphere at two footpoints

3a. Currents flowing when flux tube emerges
close in solar dynamo region

3b. Currents due to twisting & shearing motion
close at ↓-propagating Alfvénic front

Only 3a & 3b can store free magnetic energy in corona
(3b cannot provide inferred helicity input)

No counterpart of 3a & 3b on the Earth due to non-conducting
atmosphere: only 1 & 2 are possible.



Currents in substorms
Currents before a substorm & reconnection in the magnetotail

Redirection of current & acceleration resulting in aurorae



Acceleration region in flares

Acceleration during recon-
nection, or at a shock
where outflow stopped by
underlying closed field.
Models fail quantitatively:
“number problem”.

Alternative substorm-like acceleration

(Fletcher & Hudson 2008)

Magnetic energy released
through reconnection goes
into kinetic energy in an
outflow, and converted to
an Alfvénic flux. Accelera-
tion by Alfvén waves near
or in chromosphere.



Generation of Alfvénic flux
Energy transport in this model is driven by E⊥ & J⊥, and is a
Poynting flux due to E⊥ and the magnetic field generated by J‖.
How is J‖ determined?

Jtot = J ′‖b + Jpol + Jmag + JHall + J∇B + Jcurv,

Jmag = ∇×M, M = −(P + 1
2ηv

2)b/B, JHall = ρE⊥ × b/B

B = Bb, c = (b · ∇)b = −b× (∇×b) = n/Rc ,

J⊥ = −∇(P + 1
2ηv

2)× b

B
− ηv2

2B
b× c,

∇·J = 0 => B
∂

∂s

(
J‖
B

)
= −∇ · J⊥.

Integrating gives a modified form of Vasyliunas’ formula:

J‖
B

∣∣∣∣
foot

−
J‖
B

∣∣∣∣
apex

= −J⊥ · ∇VB , VB =

∫
ds

B
.



Currents in solar flares: unneutralized
An isolated flux tube is a misconception.
Coronal currents are unneutralized: no return currents

Like currents attract, opposite currents repel:
current-current forces invoked in earlier solar models
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Currents in solar flares: Circuit models

I Circuit models involve neutralized currents

I Driven by postulated photospheric dynamo

I Magnetic energy 1
2LI

2

I Resistance R shorts direct & return current

I Dissipation due to decrease in I (at fixed L)

360 D.s .  SPICER 

2.1.2. Examples of Circuit Models 
To illustrate* the quantitative application of equivalent circuits to magnetic energy 
storage and conversion and, at the same time, to demonstrate some important effects 
associated with the flare-related transport and storage of new magnetic energy in the 
solar atmosphere we consider two flare model geometries: a loop (or loops), Figure 5a, 
and an inverted Ygeometry, Figure 7a. Consider, first, a circuit analog of a loop. Within 

DOMAIN PC 

DOMAIN R 

(a) 

-Jll 

L o 

2 o O 

JII 

• 
T 

~JIh 

C 

L -g DOMAIN PC 

DOMAIN R 

(b) 
Fig. 5. Illustrates an equivalent circuit for a closed loop. V a and R G represent the current generator 
voltage and resistive load, respectively, RI the resistive load in the other foot of the loop, C the capacitance 

associated with the polarizability of  a magnetized plasma, and L the total inductance of a loop. 

* In the discussion to follow we must  emphasize that we do not mean to imply that real current systems 
close in the manner  depicted. The examples are illustrative only. 

358 D.S. SP1CER 

Fig. 4. 

R(t) 

Lf 

kg( 

+l I_ 
v 

An LR circuit illustrating how allowing for a time dependent inductance can greatly enhance either 
the magnetic energy storage rate or conversion rate (see text). 

which it is stored or dissipated can be enhanced greatly by allowing the inductance to 
vary with time. Consider the circuit in Figure 4. The inductance of the generator is 
denoted by Lg(t), which is an explicit function of time; similarly the total resistance, 
neglecting Joule heating, is represented by Ro(t ). The load inductance is represented by 
Lz which is constant in time, and any resistance associated with the load circuit is 
included as a constant term in Ro(t ). The circuit depicted in Figure 4 is described 
mathematically by 

(L, + Lg)I'+ IfgI + IR o -- 0, (2.12) 

the solution of which is 

I ( t ) = I o ( L a ~ 1 6 2  R~ (2.13) 
\ Lg + L l Lg(t') + LzI ' 

0 

where I o and Lgo are the values of the current and generator inductance, respectively, 
at t = 0. From (2.13) it can be shown that, i f i g  > 1 and the condition 

[ ~ +  L[] c~2(t) > 1 (2.14) 
Lr _1 

is satisfied, and Lg(z) = 0, the circuit will contain more stored magnetic energy than it 
contained initially, where 

% = e x p { -  i R~ dt ; .  
Lg(t) + Lt) 

0 

(2.15) 

Note that R o still affects the rate of energy storage and the total energy stored. 

(Spicer 1982)

Circuit models are misleading; not discussed in this talk



Magnetic energy in terms of currents

The total magnetic energy in a volume V is (Jackson 1975)

Emag =
1

2

∫
V
d3x J(x) ·A(x), A(x) = µ0

∫
V
d3x′

J(x′)

|x− x′| , (1)

Emag =
µ0

2

∫
V
d3x

∫
V
d3x′

J(x) · J(x′)

|x− x′| =

∫
V
d3x
|B(x)|2

2µ0
, (2)

where J(x) is assumed confined to V . Separating into a set of
discrete currents , Ii with i = 1, 2, . . ., gives

Emag = 1
2

∑
ij

Mij Ii Ij = 1
2

∑
i

Li I
2
i +

∑
i<j

Mij Ii Ij , (3)

Li = Mii is self-inductance, Mij for i 6= j is mutual inductance.

Assumption: only coronal contributions to Li , Mij

can change during a flare.



Current changes during a flare

Model for energy release with unneutralized currents
Ii are fixed by value at solar surface
change in current paths => change in Li ,Mij → L′i ,M

′
ij

energy available to drive flare if E ′mag < Emag

Simple models for Ii ,Mij used to explore favorable configurations
for maximum energy release (Hardy, Melrose & Hudson 1998)

examples illustrated by (Aschwanden et al. 1999)

energy release at constant Li possible (Khodachenko et al. 2009)

Qualitatively: energy release when net current path decreases
formation of one long loop tends to be favored

long + short loops — sensitive to orientation of short loop

Need numerical calculations based on force-free magnetic fields
from vector magnetogram data before and after flare



Idealized current-shortening models
PRE-RECONNECTION

2-2+ 1-1+
Rise

RECONNECTION

2-2+ 1-1+

POST-RECONNECTION
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1-

1+
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1-

1+
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1+

2-2+
1-

1+
2-2+

1-
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2-2+
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of interacting Ñare loops cannot be described with a two-
dimensional model (as they are simpliÐed in some theoreti-
cal models) but rather require a full three-dimensional
approach, which is the main subject of this study.

The interaction of magnetic Ðeld lines can be forced only
by an external driver, e.g., by magnetic Ñux emerging from
below the photosphere, by photospheric shear motion, by
the kink instability of current-carrying loops, or by coronal
large-scale reconÐgurations. Once two magnetic Ðeld lines
are brought into physical contact (or nearly so), a reconÐgu-
ration of magnetic connectivities can be facilitated, espe-
cially when the new conÐguration corresponds to a lower
energy state and reduced magnetic tension. The simplest
magnetic topology of such a process is a quadrupolar con-
Ðguration, as illustrated in Figure 1 for a pair of two dipole-
like Ðeld lines. Let us assume that a small Ðeld line (with
footpoints labeled as 1], 1[) is rising (e.g., driven by Ñux
emergence or by footpoint shear motion) and pushes
against a preexisting large-scale Ðeld line (with footpoints
labeled as 2], 2[ ; Fig. 1 left column). Once the two Ðeld
lines approach each other sufficiently closely, the only pos-
sible way to reconÐgure dipolar Ðeld lines is by exchanging
the connectivities of opposite magnetic polarities, i.e., new
Ðeld lines that connect footpoints (1], 2[) and (1[, 2]).
The newly conÐgured Ðeld lines have initially a triangular
cusp at the reconnection point, which may relax into a
dipole-like geometry (visualized in Fig. 1, middle column).
The Ðnal outcome of this quadrupolar reconnection process
is two disjoint loops (Fig. 1, right). We apply this basic
geometric model to the interpretation of observed Ñare con-
Ðgurations. The magnetic reconnection process is expected
to occur at the speed (in the outÑow region), whichAlfve" nic
completes the relaxation episode of newly conÐgured Ñare
loops on timescales of B10È30 s for typical (compact) Ñare
loop sizes. However, the detection of newly conÐgured Ñare
loops requires Ðlling by heated plasma, e.g., by the chromo-
spheric evaporation process, which occurs somewhat

slower, approximately at the sound speed. A consequence of
this Ðlling delay is therefore that the initial cusp shape after
reconnection cannot be observed directly, while the Ñare
loops become SXR-bright only during the dipolar relax-
ation phase. We expect therefore to see the disjoint, relaxed
Ðnal loops only, but not the interacting Ðeld lines before
reconnection. However, using the geometric concept out-
lined in Figure 1, we can easily reconstruct the pre-
reconnection conÐguration by switching the connectivities
of the magnetic polarities. This method is used here to
explore the three-dimensional geometry of quadrupolar
reconnection from observed data, which provides crucial
parameters to test theoretical reconnection models. The
obtained parameters are particularly suitable for applica-
tion of a quadrupolar Ñare model developed by Melrose
(1997), which describes the interaction between two current-
carrying loops.

The three-dimensional geometry of our quadrupolar
model is deÐned in ° 2. This three-dimensional model is
then Ðtted to Yohkoh Soft and Hard X-Ray Telescope (SXT
and HXT) data of 10 Ñares (°° 3.1È3.4). Part of the data
analysis includes the application of the Melrose (1997)
quadrupolar current-loop model (° 3.5) and comparison of
the resulting magnetic energies with Ñare energies estimated
from GOES SXR and Yohkoh HXR Ñuxes (° 3.6). Based on
these results we obtain a simple approximation of MelroseÏs
model (° 4.1). We discuss our results in the context of pre-
vious concepts of quadrupolar Ñare models (° 4.2), the role
of large-scale currents (° 4.3), and shear angles of Ñare loops
(° 4.4). Conclusions are summarized in ° 5.

2. THREE-DIMENSIONAL GEOMETRY MODEL

2.1. L oop DeÐnitions
The three-dimensional geometry of magnetic Ðeld lines

involved in a quadrupolar reconnection process requires
the deÐnition of four Ðeld lines, i.e., 2 Ðeld lines before and 2

FIG. 1.ÈConcept of magnetic reconnection in a quadrupolar geometry visualized for two semicircular loops (1 and 2) with initial footpoints (1], 1[) and
(2], 2[). The three stages, (left column) pre-reconnection, (middle column) main reconnection with subsequent relaxation process, and (right column) Ðnal
post-reconnection, are depicted for three di†erent views, i.e., (top row) side view, (middle row) top view, and (bottom row) perspective view. Note that all loop
shapes in the initial and Ðnal phases are represented by circular segments, while the intermediate stages of the relaxing Ðeld lines are rendered by linear
interpolation.

(Aschwanden et al. 1999)

Current lines and magnetic field lines are not distinguished



Magnetic helicity

Magnetic helicity, H, is conserved in a flare:

H =

∫
V
d3x B(x) · A(x) = µ0

∫
V
d3x

∫
V
d3x′

J(x) · J(x′)

α(x)|x− x′| , (4)

for a force-free magnetic field

J(x) =
α(x)

µ0
B(x). (5)

with α(x) constant along each current line.

H can be expressed in terms of currents.
For discrete currents, I (Melrose 2004) suggested (incorrectly)

H =
∑
i

`i I
2
i +

∑
i<j

2mij Ii Ij , `i =
µ0Li
αi

, mij =
2αiαjµ0Mij

αi + αj
.

(6)
Reason (6) not tenable (Démoulin, Pariat, Berger 2006) explained below



Conservation of helicity
Self helicity can be written H = (T + W )Φ2

mag:
T twist about axis of flux tube: W is writhe of axis (Berger & Field 1984)

Illustration of T and T + W (Démouli & Berger 2003)
ENERGY AND HELICITY FLUXES 211

Figure 2. Two examples of rising loop structures. Field lines are drawn to show the internal twist.
The arrows at the surface represent the global motions of the loop footpoints (there are also footpoint
motions associated to the twist). On the left side the loop has internal twist but straight legs (planar
!-loop), while on the right side the loop has writhe as well as twist.

Indeed, in general, plasma motions have both components vt and vn. The first
transports the magnetic flux tubes tangentially to Sp, while the second adds the
tangential velocity uf (Equation (21)). Tracking methods are designed to follow
the photospheric footpoints of flux tubes so they measure a velocity, u, which is
the sum of both velocities:

u = vt − vn

Bn

Bt . (24)

In general, tracking methods provide the transverse velocities which are the only
ones needed to compute the full energy and helicity flux across the photosphere:

dE

dt

∣∣∣∣
Sp

= dE

dt

∣∣∣∣
t

+ dE

dt

∣∣∣∣
n

= − 1
µ0

∫

Sp

(Bt · u)Bn dS , (25)

dH

dt

∣∣∣∣
Sp

= dH

dt

∣∣∣∣
t

+ dH

dt

∣∣∣∣
n

= −2
∫

Sp

(AP · u)Bn dS . (26)

The use of vn (as deduced from Doppler measurements or as proposed by Kusano
et al., 2002) would only duplicate part of the fluxes already included in the tracking
velocity u. This result is independent of the complexity of the magnetic configura-
tion analyzed.

We conclude this section with two illustrative examples in which !-loops are
formed by a twisted flux tube with a finite cross-section. The first one has its main
axis located in a plane (as a classical planar !-loop, see Figure 2, left side), while
the main axis of the second has a helix-like shape (Figure 2, right side) so that
it has both twist and writhe helicities (see Lopéz Fuentes et al., 2003 for observed
examples of such flux tubes forming active regions). As the top part of the planar !-
loop crosses the photosphere, the upward motion induces horizontal photospheric

During reconnection only sum T + W is conserved.

Example of mutual helicity (Démoulin, Pariat, Berger 2006)

MUTUAL MAGNETIC HELICITY 9

two curves which do not involve one curve passing through the other (but each curve
is allowed to pass through itself). For two unlinked curves (which can be separated
to infinitely large distance without crossing each other), one has Lclose

C,C ′ = 0.
In the case of B localized in N flux tubes, Equation (16) simplifies to Equation (8)

and Equation (17) provides an explicit way to compute the mutual helicity. The
mutual inductance shares only one common property with the mutual helicity:
both are symmetric, i.e. Mi, j = M j,i and Lclose

i, j = Lclose
j,i . Apart from that, their

properties are very different. For example let us consider two unlinked flux tubes:
they have Lclose

i, j = 0 independently of their distance or relative orientation, unlike
the mutual inductance Mi, j of two current channels which decreases progressively
as the currents are more distant or as the current channels are less parallel (Figure 1).

The magnetic energy can also be written as a function of the Gauss linkage
number, as follow. Just as A can be written as a function of B (Equation (6)), one
has

B(x) = µ0

4π

∫
j(x′) × (x − x′)

|x − x′|3
d3x ′. (18)

Figure 1. Top: two magnetic flux tubes. The magnetic helicity is twice the magnetic flux linkage
Lclose

12 (=0 on the left, = −1 on the right) multiplied by the magnetic fluxes (Equations (8) and (17)).
Bottom: two current channels. The flux of the magnetic field created by one current channel, with unit
current, through the current channel of the other current channel defines the mutual inductance M12;
thus the mutual inductance corresponds to the linkage of the magnetic flux created by one current
channel with the second current channel (Equation (20)).
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Build up of helicity

Predominantly: H < 0 (H > 0) in northern (southern) hemisphere

Rising current-carrying flux tubes transport magnetic energy
& helicity into the corona

Estimated H = 1047 Mx2 → solar wind per 22-year cycle
1045 Mx2 → CMEs (Berger & Ruzmaikin 2000)

Twisting & shearing input too small (van Driel-Gesztelyi, Démoulin & Mandrini 2003)

=> H in emerging current-carrying flux tubes
=> H source in solar dynamo regions

Upper bound on the accumulated helicity (Zhang, Flyer & Low 2006)

Build-up of H → upper bound triggers CME?

A possible mechanism for releasing a CME involves threshold for
kink instability being exceeded (Török, Kleim & Titov 2004)



Kink instability and CME formation
Coronal Mass Ejections: Models and Their Observational Basis 31

overlying magnetic arcade decays gently with height, the kink instability would be suppressed af-
ter initial development, producing the so-called “failed eruption” found by Ji et al. (2003), and if
the overlying magnetic field decays rapidly, the kink instability would lead to an ejective CME.
According to Inoue and Kusano (2006), the short axis of the flux rope would also suppress the
kink instability. Besides, as pointed by Baty (2001), the classical critical twist for the onset of the
kink instability is applicable only for flux ropes with the radius much larger than the axis pitch
length. For a general case, it is the local pitch angle that determines the instability.

=18.0

=13.5

=9.0

=0.0t

t

t

t

Top view Side view

Figure 20: The evolution of the kink instability of a twisted flux tube based on an analytical solution
(from Sakurai, 1976).

(b) Torus instability: A current ring is unstable against expansion if the external potential field
decays su�ciently fast, e.g., @ ln B/@ ln r > 3/2 (Bateman, 1978), which was extended to study
the dynamics of the flux rope in CMEs (Chen, 1989), and was called torus instability by Kliem
and Török (2006), though these early works are based on circuit models, rather than solving full
MHD equations.

With 3D MHD simulations, Fan and Gibson (2007) studied the emergence of a flux rope from
the subsurface into the magnetized corona. As illustrated by Figure 21, when the background
magnetic field declines slowly with height, a strongly-twisted flux tube emerging out of the solar
surface may rupture through the arcade field via kink instability (top panels); whereas when the
background magnetic field declines rapidly with height, a weakly-twisted flux tube, whose twist
is below the threshold for kink instability, still erupts with little writhing like a planary outward
expansion. They interpret the latter case as the “torus instability”.

It is pointed out here that in their simulations the flux rope is transported kinematically into
the simulation box by changing the boundary conditions. Besides, reconnection due to numer-
ical resistivity exists, which would have a↵ected the dynamics of the system, and makes it not
straightforward to distinguish ideal MHD instability from resistive instability. The observational
result that the extrapolated magnetic field for the torus instability eruption events does not show a
systematic rapid decay with height, as presented by Liu (2008), suggests that more factors should
be considered.

It is noted in passing that, in several simulations works (e.g., Amari et al., 2004; Manchester IV
et al., 2004; Fan and Gibson, 2007; Archontis and Hood, 2008), the flux rope erupts soon after it
emerges out of the solar surface. This is slightly di↵erent from other “storage-and-release” models,
and might explain the CMEs associated with the emergence of a new active region.

(c) Catastrophe: As demonstrated by MHD numerical simulations (e.g., Török and Kliem,
2005), the often used linear instability analysis has the limitation of saying nothing about the

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2011-1

Above: Sakurai (1976).

Right: Fan (2006).

Two illustrations of the development

of a kink instability. The instability

transforms some twist into writhe.

A simple model for ejection of a CME

is when the writhe can form a closed

loop, and reconnection allows the

plasmoid formed to detatch itself.

Coronal Mass Ejections: Observations 47

Figure 29: Sequence showing the three-dimensional evolution of the coronal magnetic field via the kink
instability model. The heavy blue/green lines represent the kinked flux rope, which erupts through the
overlying strapping magnetic field (red). This field is pushed aside during this process. Image reproduced
by permission from Fan (2005), copyright by AAS.

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2012-3



Reconnection in 3D: fan and spine
Expanding the magnetic field around null at x = x0 gives

Bi = Bij(xj − x0j) + · · · , Bij = (∂Bi/∂xj)x=x0 .
Regarding Bij as a matrix, ∇·B = 0 implies that it is traceless,
Bii = 0. In a 2D null, one of the diagonal components is zero and
the other two are equal and opposite. In a 3D null, two of the
diagonal components have opposite signs to the third, defining a
“fan” plane and a “spine” axis, respectively. A magnetic
reconnection model involves two 3D nulls and a null-null line.

(Lau & Finn, ApJ, 350, 672, 1990)



Reconnection in 3D: role of currents
Inclusion of current modifies X-point but does not change
topological structure (Parnell et al. Phys. Plasmas 3, 759, 1996)

Currents play an essential role in a solar flare, but the relation
between these large-scale currents and the currents in individual
reconnection regions has not be explored.



Reconnection in 3D: old ideas become new

Separatrices play an important role in 3D reconnection models
(Longcope, Living Rev. Solar Phys., 2, 2005)

Separatrices identified in quadrupolar models
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(Baum & Bratenahl, sol. Phys. 67, 245, 1980)

Obvious similarities to early quadrupolar models (Giovanelli 1947; Sweet 1958).

3D reconnection changes large-scale magnetic connectivity,
as in the quadrupolar cartoons (Nishio et al. 1997; Melrose 1997).



Early history of reconnection: solar flares
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Giovanelli’s (1946, 1947, 1948) cartoons for “chromospheric flares”
describing currents, magnetic nulls and a quadrupolar magnetic
structure, respectively.



Reconnection in 3D: new jargon
A new jargon has developed concerning 3D reconnection, and it is
important to recognize this in order to understand the literature.

“Separators” are lines which divide four topologically distinct flux
domains (Giovanelli 1947; Sweet 1958; Baum & Bratenahl 1980)

3D magnetic “skeleton” defined by separatrices and null points
(Longcope, Living Rev. Solar Phys., 2, 2005).

3D reconnection in the absence of nulls—new concepts:
squashing factor Q: gradient in magnetic connectivity
quasi-separatrix layers (QSLs): regions of anomalously large Q

Projection of magnetic field onto plane perpendicular to separator
can be hyperbolic or elliptic

continuous but severely distorted, it may preclude the formation of a genuine current sheet 
(pace Paker) but will not preclude current structures which are very thin and contain extremely 
large current densities... a quasiseparatrix layer (QSL), defined as a region of large mapping 
distortion”. Discusses submerged pole models, correspondence with other descriptions. Coronal 
null points theorems. Heliospheric field topology.  
 
Parnell, C.E., Haynes, A.L. & Galsgaard, K. 2010, JGR 115, A02102  
Projection of hyperbolic fields around a separator onto a plane ⊥ to separator may be 
hyperbolic or elliptic: “it is not possible to determine the 3‐D global magnetic topology of a 
magnetic field unless you know the magnetic field practically everywhere”.  

 
Separator reconnection: “occurs in local hot spots of current along separators”. Simple analytic 
results plus MHD simulation to investigate dynamics. “If, instead, we cut off our box a few grid 
points higher so our domain still contained the remains of the separator but there were no 
longer any nulls within our domain, we would effectively have created a quasi‐separator. Since 
the reconnection found in our experiment occurs along the separator and not at the nulls, we 
would expect reconnection to occur in much the same way along our quasi‐separator. Thus, we 
suspect that reconnection about quasi‐separators is likely to be very similar.” Discussion of 
whether it is possible to unambiguously identify structures from magnetic fields “inferred from 
X‐ray or UV images”. 
Thalmann, J.K., Tiwari S.K. & Wiegelmann, T. 2013, ApJ 769:59 (9pp) 
Comparison of NLFFF reconstructions using optimization for SDO/HMI versus SOT/SP for a 
given AR (also using different resolutions), including comparison of squashing factor maps. 
 
Guo, Y. et al. 2013, ApJ 719:157 (13pp) 
Study of an AR in the buildup to a flare/CME including using NLFFF reconstructions with 
optimization based on BBSO Digital Vector Magnetograph observations. QSLs are calculated. A 
flux rope is identified and found to be “wrapped by QSLs with large Q values”.  
 
Jiang, C., Wu, S.T., Feng, X., and Hu, Q. 2014, ApJ 780:55 (19pp) 
Study of formation and eruption of an AR sigmoid via a sequence of NLFFF models constructed 
with an MHD relaxation code (Jiang & Feng 2013) based on SDO/HMI data. There is emphasis 
on topology: “a new bipole emerges into the negative polarity of a preexisting bipolar AR, 
forming a nullpoint topology between the two flux systems. A weakly twisted flux rope (FR) is 



Reconnection in 3D: applications

These ideas being incorporated into models for solar flares:

then built up… largely through flux cancellation, forming a bald patch separatrix surface 
(BPSS)... dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid 
and the rope. The accelerated expansion of the upperportion rope strongly pushes its envelope 
flux near the null point and triggers breakout reconnection at the null, which further drives the 
eruption.” They don’t explain how they identify the null. 
 
   Topological model in Jian et al. (2014) 

 
 
Mandrini, C.H. et al. 2014, Solar Phys. 289, 20412071 
Uses a variety of techniques applied to THEMIS data, including NLFFF reconstructions with 
optimization. Coronal nulls are identified in the the NLFFF models, and photospheric QSL maps 
constructed. “A magneticfield topological analysis indicates ... null points, associated 
separatrices, and quasiseparatrix layers (QSLs) where magnetic reconnection is prone to 
occur. The presence of null points is confirmed by a linear and a nonlinear forcefree 
magneticfield model.”  

 

Much more work needs to be done in exploring the implications.



Summary and conclusions

I Magnetic reconnection concept has existed for nearly 70 years

I Early reconnection models were 2D

I Reconnection too slow to explain short timescale of solar flare

I 2D reconnection is potentially misleading:
some essential effects appear only in 3D

I Anomalous conductivity required; occurs on tiny scale

I Major mismatch (∼ six orders of magnitude) between scale of
detailed reconnection models and scale relevant to flares

I Effective dissipation requires a statistically large number of
individual reconnection sites

I Large scale structure defined by “skeleton” involving
separatrices and nulls

I 3D reconnection in absence of nulls: QSLs, large Q

I Early ideas (Giovanelli 1946–8; Sweet 1958) on nulls, connectivity and
currents remain relevant, notably in separatrices and skeletons



Pulsar electrodynamics

Pulsar electrodynamics contains long-standing inconsistencies.
(Melrose & Yuen, J. Plasma Phys. 82, 635820202, 2016)

What determines velocity u of magnetospheric plasma?

Fluid velocity, u, & electric field, E satisfy: E = −u× B
Does u determine E, or E determine u?

Most models get this wrong: electrodynamic problem is to
determine E, with E determining u

Specific global electrodynamic models

I Vacuum dipole model

I Aligned corotation model

I Oblique corotation model

I Force-free electrodynamic models



Vacuum dipole model
Rotating magnetized neutron star in vacuo

dipole axis at oblique angle, α, to rotation axis, ω.

Model used to estimate
B sinα ∝ (PṖ)1/2 & age P/2Ṗ

Intrinsically flawed as stand-alone model

I no plasma => no pulsar radiation

I slowing down due to magnetic dipole radiation
incorrect: slowing down due to wind

I magnetic dipole radiation at ω = 2π/P cannot escape

I predicted alignment (Davis & Goldstein 1970),
α→ 0 on spin-down time, not observed



The fields in rotating dipole model can be calculated exactly.
Exact results already applied to magnetic stars (Davis 1947; Deutsch 1955)

Magnetic field

B(t, r) =
µ0

4π

[
3r r ·m− r2m

r5
+

3r r · ṁ− r2ṁ

r4c
+

r × (r × m̈)

r3c2

]
,

with ṁ = ω×m, m̈ = ω× (ω×m).
dipole term ∝ 1/r3, inductive term ∝ 1/r2, radiative term ∝ 1/r .

Electric field

E(t, r) =
µ0

4π

[
r × ṁ

r3
+

r × m̈

r2c

]
,

inductive term ∝ 1/r2, radiative term ∝ 1/r .
Radiative terms determine power radiated.

Only terms in red retained in following discussion
others referred to collectively as retarded terms.



Figure: From Harding (2004)



Corotating models
Plasma assumed to corotate with the star.

E = 0 in corotating frame
=> Ecor = −(ω× r)× B in inertial frame.

=> Goldreich-Julian charge density
ρGJ = ε0∇·Ecor = ε0[−2ω · B + (ω× r) · ∇×B].

How in neglect of Eind justified?
The two are comparable:

Eind =
µ0mω

4πr2
r̂×(ω̂×m̂), Ecor = −µ0mω

4πr2
(3ω̂× r̂ r̂ ·m̂−ω̂×m)

Aligned model: α = 0 => Eind = 0 (Goldreich & Julian 1969)

Oblique model: Eind = 0 postulated by assuming
∇×E = 0 in corotating frame (Scharlemann, Arons & Fawley 1978)



Can Eind be neglected in oblique rotator?

Electric field can be separated into inductive and potential parts:

E = −∂A

∂t
−∇Φ, Eind = −∂A

∂t
, Epot = −∇Φ.

Thought experiment

Start from vacuum model and add plasma.

Charges flow to tend to neutralize Eind‖ = Eind · B/B
Complete neutralization requires Eind‖ + Epot‖ = 0

Plasma => Epot 6= 0 but does not change Eind

Eind is always present



Plasma response

Plasma responds to the electric field:

I response to E⊥ is electric drift: u = E⊥ × B/B2

I response to E‖ is oscillatory at plasma frequency

Electric drift has components due to Eind and Epot

u = uind + upot, uind =
Eind × B

B2
, upot =

Epot × B

B2
.

If E = Ecor, u = ucor⊥, ucor = ω× r => upot = ucor⊥ − uind

Note: magnetosphere of an oblique rotator cannot be corotating
ucor‖ requires mechanical driver (Hones & Bergeson 1965)

no such driver exists in pulsar magnetosphere

Simple model: (Melrose & Yuen 2013,2014)

u = yuind + (1− y)ucor⊥, 0 ≤ y ≤ 1.
=> non-corotational motion parameterized by y .



Gaps in a pulsar magnetosphere
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Ruderman & Sutherland, ApJ, 196, 51 (1975)

Aligned rotator: polar cap defined by the last closed (dipolar) field
line and plasma inside the polar cap escapes forming a wind.
Corotation impossible: ρ→∞ at the light cylinder.
Angular speed changes Ω∗ → Ω′ across a “gap” with E‖ 6= 0.

This is a form of generalized reconnection.



Gaps in oblique rotators

Stationary gap models are violently unstable Levinson et al. ApJ

631, 456 (2005); Beloborodov & Thompson ApJ 657, 967 (2007)

E‖ 6= 0 sets up large amplitudes oscillations (LAOs)
Stationary “gaps” replaced by E‖ 6= 0 in LAOs

Change in upot and Epot = −∇Φ across a gap
due to potential drop Φ→ Φ−∆Φ across gap

Detailed model: ∆Φ depends on field line constants:
r0 = r/ sin2 θb and φ0 = φb

Dependence of ∆Φ(r0, φ0) on magnetic azimuthal angle φ0 = φb
=> dependence on φb can develop across gap

=> possible model for drifting subpulses
diocotron instability develops in gap
=> dependence on cosmφb



Gaps in FFE models

Force-free electrodynamics (FFE) is related to MHD:
fluid theory with relativistic effects included
and plasma inertia neglected

As in MHD, assumed E‖ = 0 => no gaps

FFE models with E‖ = 0 everywhere lead to singular surfaces
interpreted as current sheets (near light cylinder)
pair creation assumed to occur in these current sheets?

Need for gaps taken into account indirectly in some FFE models

In general, location and distribution of gaps unsolved problem

Is radio source associated with pair creation in a gap?


