Transient observations in the VHE gamma-ray band by MAGIC/CTA and Cherenkov Telescopes (MAGIC/CTAなどのチェレンコフ望遠鏡による 突発天体の高エネルギーガンマ線観測)

> <u>Masaaki Hayashida</u> <u>(Institute Cosmic-ray research,</u> <u>the Univ. of Tokyo)</u>

Outline of this talk

- 1. Very-high-energy gamma-ray band
 - Imaging Atmospheric Cherenkov Telescope
- 2. Neutrino event follow-up (all IACTs)
- 3. GRB observations (MAGIC)
- 4. AGN flare observations (MAGIC)
- 5. CTA status and plan for transient observations

Very-high-energy gamma-ray band

TeV (>100 GeV) gamma-ray sky

TeV (>100 GeV) gamma-ray sky

Galactic	69	
- SNR		23
- PWN		33
- PSR		2
- Binary		6
- Clusters		5
Extragal.	72	
- LMC		3
- Blazer		63
- FRI		4
- Starburst gal.		2
UNID	35	
Total	176 ⁵	

Detection of E>100 GeV γ-rays

- Cherenkov light is emitted by relativistic particles in the shower
- number of hadron/gamma more than 1000 times
 -> need to reject hadron events

2017/02/23

Masaaki Hayashida (ICRR)

γ ray 100 GeV

<u>γ showers</u>

- Narrow images
- Aligned towards source direction

hadronic showers

- Spread images
- Isotropic arrival direction

Stereo observations

γ -ray(signal) /hadron (background) > 1000

2017/02/23

event (real) display (MAGIC)

Event: 10 (17377), θ^2 =0.86 deg², total size= 385.8 pe

8

IACTs in currently operation

The MAGIC telescopes

observational performance: (Aleksic+16, APh)

- Energy threshold (trigger): 50 GeV (LZA), 100 GeV (at 40°)
- Energy resolution: 15% 23 % (LZA: low zenith angle)
- Angular resolution: 0.05° (>1 TeV), 0.09° (> 90 GeV)
- Sensitivity : 0.67±0.04% C.U. (at 290 GeV LZA) Crab. Unit (@290GeV) ~10⁻¹⁰ cm⁻² s⁻¹ [50 hr obs.]

Camera Field of View (FoV)

MAGIC: ~3.5deg

VERITAS: ~ 3.5deg

HESS: ~5deg

Acceptance on camera (MAGIC)

Zenith angle dependences

 observing energy range (energy threshold: E_{th}) has dependency on zenith angle (zd)

higher E_{th}

Gamma rays absorbed by EBL

$\gamma + \gamma_{\text{EBL}} \rightarrow e^+ + e^-$ 1ES 1011+496, Feb'2014 flare (z=0.212) log-parabola fit E²dφ/dE (erg cm⁻². threshold condition: E ϵ (1-cos θ)>2 m_e²c⁴ Max cross-section: 10-11 $\lambda \sim 1.24(E_v / TeV) \mu m$ (at 90° interaction) Fermi-LAT (pass-7 public data) MAGIC, de-absorbed 10-12 (1.05*Dominguez'11) e.g. TeV + IR MAGIC, observed preliminary 100 GeV + UV (MAGIC coll. A&A, 16) 10^{-1} 10 10^{2} 10^3 10 Energy (GeV)

γ -ray attenuation

Observation strategy

- Fixed (normal) observations
 - scheduled in period by period
 - time allocation (source selection) once a year
 - time critical observations (MWL campaign, phase)
- ToO observations
 - multi-messenger (v, GW) alerts
 - GRB alerts
 - multi-wavelength alerts (known sources)

$\boldsymbol{\nu}$ event observations by MAGIC

3 "archival" events + 2 real time alters

Archival HESE events by MAGIC

(archival) multi-PeV track (Atel#7856)

- ★ 5 h observations in March 2016
- ★ zenith 21 -38 deg
- ★ E > 120 GeV

detected on 2014 June 11 2.6+/-0.3 PeV reported on 2015 July 29

★ Flux UL (95% C.L., a=2.3): (0.9- 3.5) x 10⁻¹¹ cm ⁻²s ⁻¹ (~2-10% C.U.)

Archival HESE events by H.E.S.S.

- Track like events
- angular uncertainty < FOV
- southern source

no significant excess

Schuessler@AMON16

IceCube 18

23^h10^m00^s 23^h05^m00^s 23^h00^m00^s 22^h55^m00ⁱ Right Ascension (J2000)

IceCube 44

Archival ν events by VERITAS

57 hours for 18 events (3 HESE, 15 through-going track)

no significant excess

Santander+16 (arXlv:1612.0430)

ID	Observation time [min]	UL (99%) $[cm^{-2} s^{-1}]$	UL (99%) [C.U.]
C5	180	8.33×10^{-12}	2.3%
C13	574	4.01×10^{-12}	1.1%
C37	275	7.30×10^{-12}	2.0%
UC2	25	2.12×10^{-11}	5.8%
UC3	180	6.31×10^{-12}	1.7%
UC4	122	9.89×10^{-12}	2.7%
UC5	90	6.66×10^{-12}	1.8%
UC6	25	9.53×10^{-12}	2.6%
UC7	15	3.96×10^{-11}	10.9%
UC8	60	9.31×10^{-12}	2.6%
UC9	40	1.52×10^{-11}	4.2%
UC10	90	9.40×10^{-12}	2.6%
UC11	209	4.4×10^{-12}	1.2%
UC12	25	9.53×10^{-12}	2.6%
UC15	90	7.40×10^{-12}	2.0%
UC16	40	8.57×10^{-12}	2.4%
UC17	150	4.41×10^{-12}	1.2%
UC19	210	3.92×10^{-12}	1.1%

3-10 hours for each HESE (C) events and UL of 1-2 % Crab (>100 GeV)

Alert-1: 1st HESE

2016-04-27 05:52:32 UTC (the first GCN event: HESE) 1st notice: 05:53:53 UT

- RA=239.66deg, Dec=+6.85deg (8.9deg@90%, 1.6@deg50%)
- VERITAS observed it from 05:55:45 UTC for 71 min

2nd notice: 23:24:24 UT, a refined position (offline analysis)

- RA=240.57deg, Dec=+9.34deg (0.6deg@90%)
- VERITAS observed it on the next night (28th) for 118 min
- MAGIC observed for ~2 h with ~42 hrs delay.

Alert-2: 2nd HESE/1st EHE

2016-07-31: 01:55:58 UT (the 2nd GCN alert) from both HESE and EHE (the 1st EHE alert)

- Initial HESE pos. = 215.11deg, Dec = -0.46deg
- Initiad Estible prose time 2150900 deg, Dec = -0.42 deg
- Not visible at the time of alert. Observed in the next night.
- <u>H.E.S.S.</u> for ~1 hr, <u>MAGIC</u>: 1.3 hrs (started 21:25 UT.),
- Refined postion: RA=214.544deg, Dec:-0.335deg (@Aug 1, 02:35:54 UT)

GRB observations with MAGIC

- Dedicated alert system from GCN
- Automatic response (upgraded in 2013)
 - Zenith $< 60^{\circ}$
 - Moon distance $> 30^{\circ}$
 - Sun zenith $> 103^{\circ}$
- up to 4h of observations after prompt emission
- · Fast movement of the telescopes

<Galactic coordinate>

<u>90 GRBs were observed</u> (since 2005)

GRBs observed with MAGIC

GRB observation status

				Moretti@Yachay16			achay16
	Т <u>,</u> [UTC]	Т ₉₀ [sec]	z	Alert [UTC]	Start [UTC]	Zenith ^[deg]	Delay [sec]
GRB131030	20:56:19	41	1.3	20:56:34	20:56:45	33-40	26
GRB140430	20:33:36	174	1.60	20:33:51	20:52:06	45-54	1110*
GRB140709	01:13:41	99	-	01:14:02	03:17:15	25-37	7414*
GRB140930	19:41:42	0.8	-	19:42:02	21:10:05	51-18	5243*
GRB141026	02:36:51	146	3.35	02:38:09	02:38:27	10-50	96
GRB141220	06:02:52	7	1.32	06:03:17	06:03:47	28-19	55
GRB150428A	01:30:40	53	-	01:31:43	01:32:10	37-54	90
GRB150428B	03:12:03	131	-	03:12:38	03:13:02	50-27	59
GRB151215	03:01:28	18	-	03:01:46	03:01:57	16-58	29
GRB160119	03:06:08	116	-	03:07:50	03:17:09	56-13	661
GRB160203	02:13:10	20	3.52	02:16:13	02:16:25	55-52	195
GRB160821B	22:29:13	0.5	0.16	22:29:28	22:29:37	34-55	24
GRB160910	17:19:39	-	-	17:20:19	20:21:53	45-70	3734*

GRB 090102 limits from MAGIC

GRB090102 (z=1.547), afterglow observations

(J. Aleksic et al. (MAGIC Collaboration), 2014, MNRAS, 437, 3103)

GRB: Late time observations

GRB130427A (Ackerman+14)

VERITAS observed the source +20h (70ks), +2 days, + 3 days (no detection)

Date	t _{start} (UTC)	t _{end} (UTC)	Exposure (s)	Significance ^b (σ)	Flux UL ^c		
013 Apr 28	03:32:35	04:31:16	2925	1.3	9.4×10^{-12}		
013 Apr 29	03:32:59	05:33:39	5746	1.1	6.6×10^{-12}		
013 Apr 30	03:22:02	06:05:40	7814	-0.5	2.7×10^{-12}		
otal			16485	0.9	3.3×10^{-12}		

(Aliu+14)

- Many LAT GRBs show late time (delayed) emission in the (early) afterglow phase
- GRB observation strategy of MAGIC has been updated to observe events even +2-3 days.

AGN (blazar) flare

Flare alert system

- 1. VHE self-trigger
 - Under "MAGIC/HESS/VERITAS/HAWC/FACT flaring AGN agreement"
 - When one find a flare, one inform others by e-mail.
 - Usually, onsite analysis can shows a results in a few 10 minutes
- 2. HE (Fermi-LAT) trigger
 - Self monitoring. Communication between LAT and IACTs
 - About 6 8 hour delay at fastest (until LAT data becomes available)
- 3. X-ray/optical trigger
 - many "monitoring" programs are on going
 - On-site optical telescope in each group
 - The Astronomer's Telegram
 - informed by individuals

FSRQ PKS1441+25 (z=0.94)

Initiated by high flux with a hard-index in Fermi-LAT (e.g., Atel7402)

QSO B0218+357 (z=0.944)

- QSO B0218+357 is a gravitationally lensed blazar at z=0.944 with a spiral galaxy B0218+357G at z=0.68
- 11-days is the time-delay

- In 2014, Fermi got the first flare, and 11 days after, MAGIC detection
- First gravitationally lensed VHE γ rays ever observed
- – 2hours, 6 sigma significance

Hadronic origin γ-ray scenario: 3C 279

(Petropoulou, Nalewajko, MH+17, MNRAS)

 $\gamma_{\rm p,min}$

 $\gamma'_{p,br}$

 10^{6}

 $\gamma_{p,max}$

 10^{8}

100PeV

 $(\rightarrow \text{PeV }v)$

 $S_{p,1}$

1.6

 $S_{p,2}$

2.1

- Base code: Petropoulou & Dermer 16, ApJL
- GeV γ-ray origin: proton synchrotron (need less power but higher proton energies than photomeson (pγ) origin)
- Data : Orbit-D (red: simultaneous UV, X-ray and γ-ray data)

Towards the next generation IACT

The Cherenkov Telescope Array (CTA)

大口径 low energy threshold (~20 GeV) → high-z, pulsar

few large telescopes (~400 m² mirror area) for lowest energies 中口径 deep observations ~km² array of medium-sized

25 MSTs

telescopes (~100 m² mirror area)

小口径 highest energies → PeVatron

large 7 km² array of small telescopes (few m² mirror area)

4 LSTs

CTA Consortium

CTA : Two Array Sites

CTA performanc

ential Flux E²dN/dE (erg cm⁻²

(compared to the current Cherenkov telescopes)

- 1. energy range is extended: 20 Ge
- 2. increased FOV
 - (<mark>5°-8° _[СТА] VS З°-5</mark>°[now])
- 3. better angular resolution
 - (<mark>0.05° _[СТА] VS 0.1</mark>° [now])
- 4. better energy resolution
 - (10-20 %_[СТА] VS 15-30% [now])

more feasible than Fermi-LAT for short time observations

Sensitivity

LST (Large Size Telescope)

- Diameter : 23 m
- Dish Area: 368 m²
- Focal Length : 28 m
- F/D : 1.2
- Dish profile : Parabolic (<0.6nsec)
- segmented mirror : 198
- Camera FOV: 4.5°
- 1855 pixel (0.1° /50mm/pix)
- dish structure : CFRP
- total weight : ~ 120 ton
- re-pointing : < 20 sec
- Active Mirror Control (<14")

Organization: observatory

cherenkov telescope array

Science Working Group coordinators

Transient KSP

- GRBs
- HE neutrino transients
- Galactic transients

 microquasars, PWN flares, novae, etc
- X-ray/optical/radio transients

 TDEs, SN shock breakout events, <u>FRBs</u>, new transients
- gravitational wave transients
- serendipitous VHE transients
- VHE transient survey via divergent pointing

GRB light curve: Fermi vs. CTA

based on GRB 080916C

expected detection rate of GRB ~0.5 GRB yr¹ (very model dependent, though,,)

Divergent pointing

Summary

- IACT trainset follow-up programs (ToO program)
 - can start observation in real time (auto) and the next night (manual)
 - duty cycle ~15% (~1200 hr) including moderate moon time.
 - multi-messenger (v) alerts (auto/manual) → no detection, yet

- archival HESE/track events, HESE/EHE alerts

- <u>GRB alerts (real time</u>) → *no detection, yet*
 - MAGIC observed 90 GRBs (and several within prompt)
- multi-wavelength alerts (manual)

– successful for blazars \rightarrow extended the γ -ray horizon to z~1

- CTA: `transients' is one of the key sciences
 - pre-defined ToO program within the consortium
 - plan: 1st LST: 2017 Nov., Scientific operation starts: 2021?