Q. How many transients in 1 deg²?

Q. How many transients in 1 deg²?

Optical 20 mag survey (1m telescope)

Optical 20 mag survey (1m telescope)

$$N \sim RV\Delta t f_{\Omega} \sim 5 \times 10^{-4} \left(\frac{R}{10^{-4} \text{ Mpc}^{-3} \text{ yr}^{-1}}\right) \left(\frac{d}{100 \text{ Mpc}}\right)^3 \left(\frac{\Delta t}{20 \text{ days}}\right) \left(\frac{\Omega}{1 \text{ deg}^2}\right)$$

Туре	Mabs	Δt	R (Mpc ⁻³ yr ⁻¹)	d _{max} (Mpc)	Zmax	N (deg-2)
la	-19	20	0.3 x 10 ⁻⁴	800	0.17	0.1
Type II (H-rich)	-17	50	0.7 x 10 ⁻⁴	300	0.07	0.02
Type lbc (H-free)	-17	20	0.2 x 10 ⁻⁴	300	0.07	0.002
Type IIn (CSM rich)	-19	50	0.1 x 10 ⁻⁴	800	0.17	0.05
Hypernova	-18	20	0.01 x 10 ⁻⁴	400	0.09	0.0005

Optical 20 mag survey (1m telescope)

For core-collapse SNe: z ~ 0.1

Optical 25 mag survey (8m telescope)

$$N \sim RV\Delta t f_{\Omega} \sim 5 \times 10^{-4} \left(\frac{R}{10^{-4} \text{ Mpc}^{-3} \text{ yr}^{-1}}\right) \left(\frac{d}{100 \text{ Mpc}}\right)^3 \left(\frac{\Delta t}{20 \text{ days}}\right) \left(\frac{\Omega}{1 \text{ deg}^2}\right)$$

Туре	Mabs	Δt	R (Mpc ⁻³ yr ⁻¹)	d _{max} (Mpc)	Zmax	N (deg-2)
la	-19	20	0.3 x 10 ⁻⁴	7000	1	50
Type II (H-rich)	-17	50	0.7 x 10 ⁻⁴	2000	0.4	10
Type lbc (H-free)	-17	20	0.2 x 10 ⁻⁴	2000	0.4	1
Type IIn (CSM rich)	-19	50	0.1 x 10 ⁻⁴	7000	1	20
Hypernova	-18	20	0.01 x 10 ⁻⁴	4000	0.7	0.3

Optical 25 mag survey (8m telescope)

For core-collapse SNe: z ~ 0.5

SN Typing is not easy only by images (needs color, spectrum)

Optical (transient) N (deg⁻²) 10² Type Ia (z<1) Type IIn (z<1) 10¹ Type II (z<0.4) Type lbc (z<0.4) 100 Hypernova (z<0.7) 10-1 Type Ia (z<0.2) 10⁻² CCSN (z<0.1) sensitivity 25 mag 20 mag

Radio (transient)

~ 5 flat spectrum source (persistent)

High-E gamma-ray (persistent)

Fermi/LAT

Very high-E gamma-ray (persistent)

Discussion

- Contamination strongly depends on sensitivity
 - Source luminosity
 - Distance
- Radio/X-ray/Gamma-ray transient
 - < 1 deg⁻² @ current sensitivity
- Optical transient
 - ~0.1 deg⁻² @ 20 mag (core-collapse SN, z < 0.1)
 - ~50 deg⁻² @ 25 mag (core-collapse SN, z < 0.4)
 - => 0.1 deg localization is desired