High Energy Neutrinos and Transient Phenomena

Kazumi Kashiyama (U. of Tokyo)

Outline

- High energy neutrinos
 - Why important?
 - How to produce?
 - Very quick overview of IceCube neutrinos
- High energy neutrinos from transient phenomena
 - Some general arguments about IceCube targets
 - What have been done so far
 - What "we" can do

High energy neutrinos

Multi-messenger astronomy

AGNs, SNRs, GRBs...

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

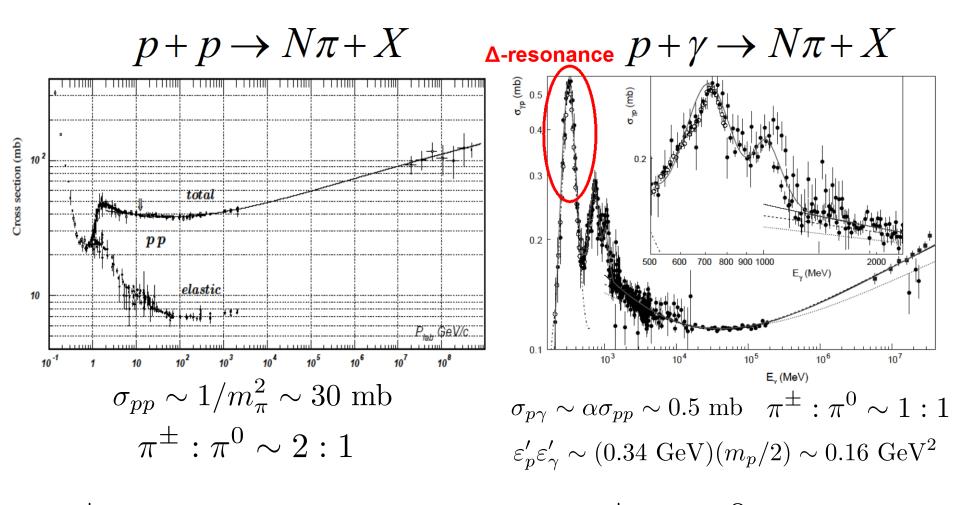
Neutrinos

р

They are weak, neutral particles that point to their sources and carry information from deep within their origins. Earth

air shower

Cosmic rays


black

holes

They are charged particles and are deflected by magnetic fields.

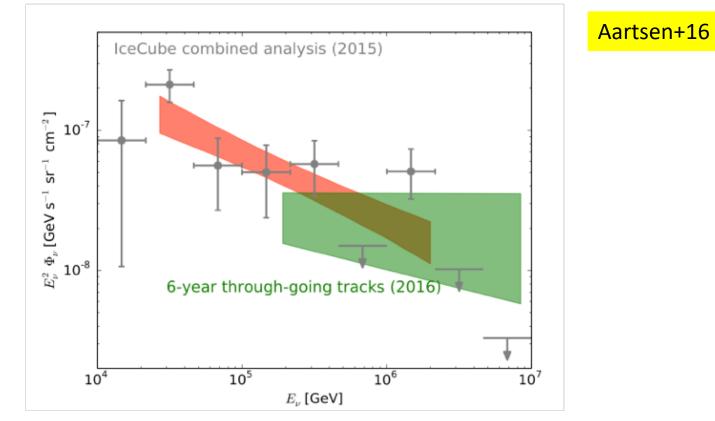
Image: Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

High-E neutrino production ; pp & py

$$\pi^{\pm} \to \nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e}(\bar{\nu}_{e}) + e^{\pm} \quad \pi^{0} \to 2\gamma$$

$$E_{\nu} \sim 0.04 E_{p} \rightarrow PeV \text{ neutrinos} \Leftrightarrow \text{ a few 10 PeV protons}$$

The Waxman-Bahcall bound

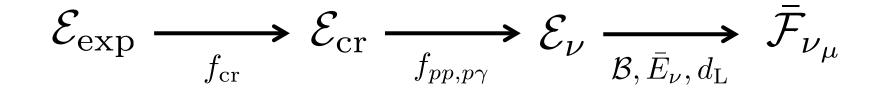

$$\begin{split} \varepsilon_{\nu}^{2} \Phi_{\nu} &= \frac{c}{4\pi} \int dz \left| \frac{dt}{dz} \right| \varepsilon_{\nu}^{2} q_{\nu}(\varepsilon_{\nu}) F(z) \quad \square \qquad \varepsilon_{\nu}^{2} \Phi_{\nu} \approx \frac{ct_{H}}{4\pi} \left[\frac{f_{\pi}}{4} \varepsilon_{p}^{2} q_{p}(\varepsilon_{p}) \right] f_{z} \\ f_{\pi}(<1) : \text{meson production efficiency} \\ f_{z}(\sim 0.6\text{-}5) : \text{source redshift evolution} \\ \varepsilon_{p}^{2} q_{p}(\varepsilon_{p}) : \text{cosmic-ray generation rate per volume} \end{split}$$

If CR injection rate is comparable to that of ultra-high energy cosmic rays;

$$\varepsilon_p^2 q_p(\varepsilon_p) \sim 0.6 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$$

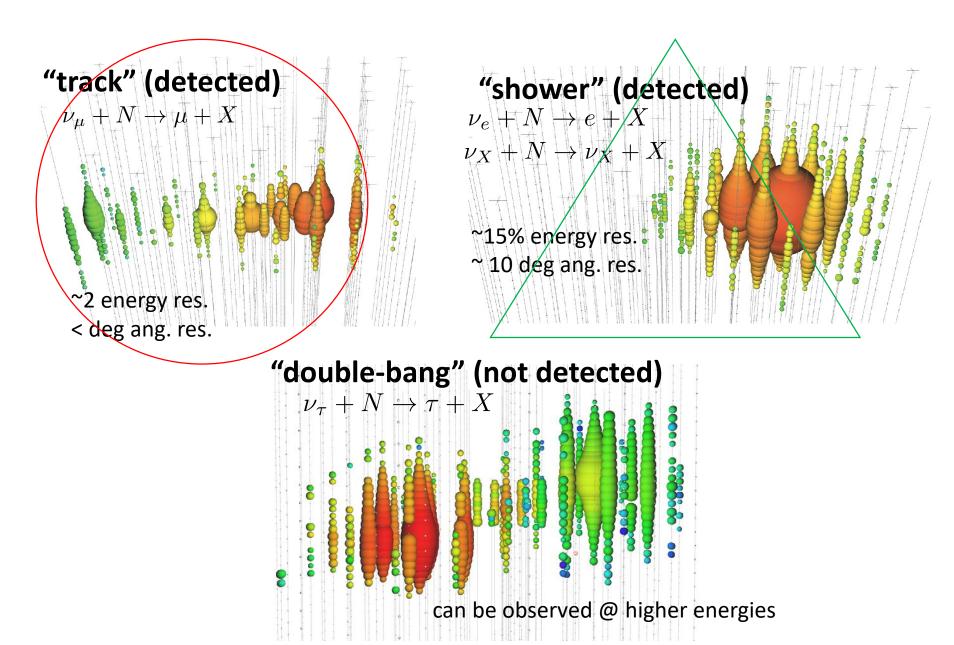
and the pion production is efficient, $\,f_\pi\,\sim\,1$

IceCube neutrinos

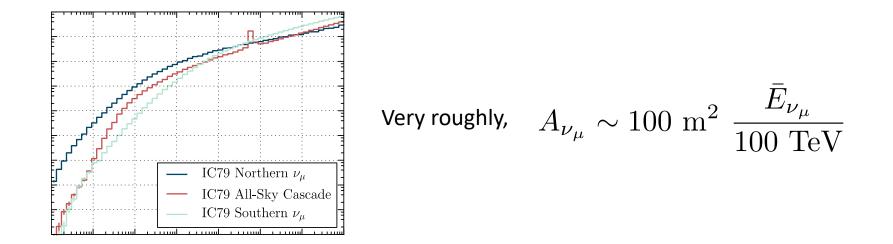


- \checkmark The atm. background-only hypothesis is rejected at 3.6 σ .
- ✓ The flux is comparable to the Waxman-Bahcall bound.
- ✓ Low energy excess at ~ 10 TeV?
- ✓ High energy cutoff at ~ PeV?

High energy neutrinos from transient phenomena


Some general arguments about IceCube targets

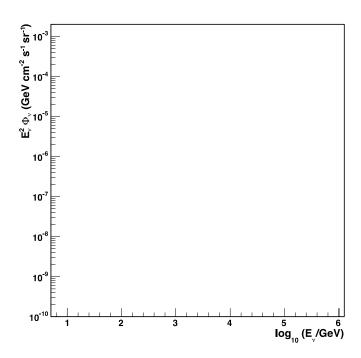
How many neutrinos per event?



$$\sim 10^{-4} \text{ m}^{-2} \frac{\mathcal{E}_{\exp}}{10^{52} \text{ erg}} \frac{f_{\text{cr}}}{0.1} \frac{f_{pp,p\gamma}}{1} \left(\frac{\mathcal{B}}{10}\right)^{-1} \left(\frac{\bar{E}_{\nu}}{100 \text{ TeV}}\right)^{-1} \left(\frac{d_{\text{L}}}{\text{Gpc}}\right)^{-2}$$

With IceCube – signal type

With IceCube – for detection, in general


$$\longrightarrow N_{\nu_{\mu}} \sim \mathcal{F}_{\nu_{\mu}} A_{\nu_{\mu}} \sim 0.01 \ \frac{\mathcal{E}_{\exp}}{10^{52} \ \text{erg}} \frac{f_{\text{cr}}}{0.1} \frac{f_{pp,p\gamma}}{1} \left(\frac{\mathcal{B}}{10}\right)^{-1} \left(\frac{d_{\text{L}}}{\text{Gpc}}\right)^{-2}$$

• Let us detect a nearby bigshot

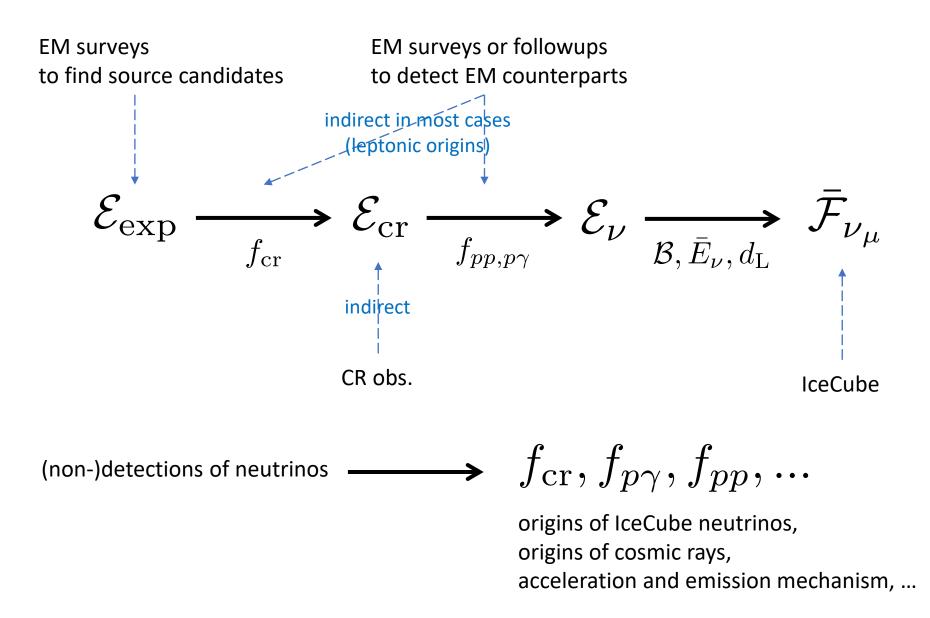
$$N_{\nu_{\mu}} \gtrsim 1 \to d_{\rm L} \lesssim 300 \; {\rm Mpc} \; \left(\frac{\mathcal{E}_{\rm exp}}{10^{52} \; {\rm erg}}\right)^{1/2} \left(\frac{f_{\rm cr}}{0.1}\right)^{1/2} \left(\frac{f_{pp,p\gamma}}{1}\right)^{1/2} \left(\frac{\mathcal{B}}{10}\right)^{-1/2}$$

• or we can also stack $1/N_{\nu_{\mu}} \sim 100 \left(\frac{\mathcal{E}_{exp}}{10^{52} \text{ erg}}\right)^{-1} \left(\frac{f_{cr}}{0.1}\right)^{-1} \left(\frac{f_{pp,p\gamma}}{1}\right)^{-1} \frac{\mathcal{B}}{10} \left(\frac{d_{L}}{Gpc}\right)^{2}$ events

With IceCube – vs atm. background

Very roughly,

$$\Delta N_{\mathrm{bg},\mu} \sim 1 \frac{\Delta \Omega}{1 \mathrm{deg}^2} \frac{\Delta t_{\mathrm{obs}}}{1 \mathrm{month}} \left(\frac{E_{\nu_{\mu}}}{1 \mathrm{TeV}}\right)^{-3/2}$$
or $\Delta t_{\mathrm{obs,c}} \sim 1 \mathrm{month} \left(\frac{\Delta \Omega}{1 \mathrm{deg}^2}\right)^{-1} \left(\frac{E_{\nu_{\mu}}}{1 \mathrm{TeV}}\right)^{3/2}$


$$\checkmark \text{ Less than ~ 1 \% are expected to be of cosmic origin @ ~TeV.}$$

$$\checkmark > 100 \mathrm{TeV} \rightarrow \text{likely astrophysical}$$

• For stacking,

$$\frac{\Delta t_{\nu}}{N_{\nu_{\mu}}} \lesssim \Delta t_{\rm obs,c} \to \Delta t_{\nu} \lesssim 8 \text{ hrs } \frac{\mathcal{E}_{\rm exp}}{10^{52} \text{ erg}} \frac{f_{\rm cr}}{0.1} \frac{f_{pp,p\gamma}}{1} \left(\frac{\mathcal{B}}{10}\right)^{-1} \left(\frac{d_{\rm L}}{\rm Gpc}\right)^{-2} \left(\frac{\Delta\Omega}{1 \text{ deg}^2}\right)^{-1} \left(\frac{E_{\nu_{\mu}}}{1 \text{ TeV}}\right)^{3/2}$$

What we can learn, in general

Target candidates

•
$$N_{\nu_{\mu}} \sim \mathcal{F}_{\nu_{\mu}} A_{\nu_{\mu}} \sim 0.01 \; \frac{\mathcal{E}_{\exp}}{10^{52} \; \mathrm{erg}} \frac{f_{\mathrm{cr}}}{0.1} \frac{f_{pp,p\gamma}}{1} \left(\frac{\mathcal{B}}{10}\right)^{-1} \left(\frac{d_{\mathrm{L}}}{\mathrm{Gpc}}\right)^{-2}$$

 $\begin{aligned} \mathcal{E}_{\rm exp}/d_{\rm L}^2 &\uparrow \\ f_{\rm cr} &\uparrow \\ f_{pp}, f_{p\gamma} &\uparrow \end{aligned}$

Brighter transients

with non-thermal signatures

in a "dense" environment

and their relatives

like

Multi-messenger obs. strategies

✓ For bigshot(s)

should not miss nearby events; A wide field-of-view is more essential.

EM surveys

IceCube

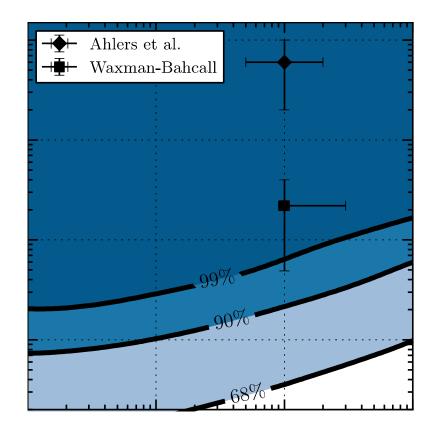
v alert quickly after the detection, rapid EM followup

✓ For stacking

EM surveys \rightarrow IceCube Find as many as possible.

What have been done

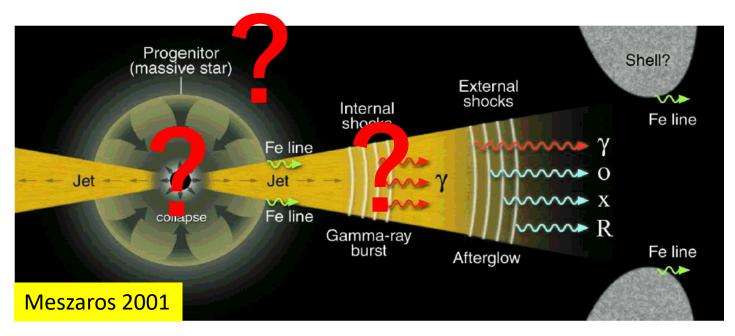
Multi-messenger obs. strategies


✓ For bigshot(s)

EM surveys ≓ IceCube

✓ For stacking

EM surveys ---> IceCube


Stacking ~1000 GRBs

Exclude GRBs as the dominant source of the observed IceCube neutrinos.

(Long) Gamma-Ray Bursts

A standard picture

 \rightarrow

- What we do not know
 - Central engine? \rightarrow BH and magnetar formation
 - Prompt emission?

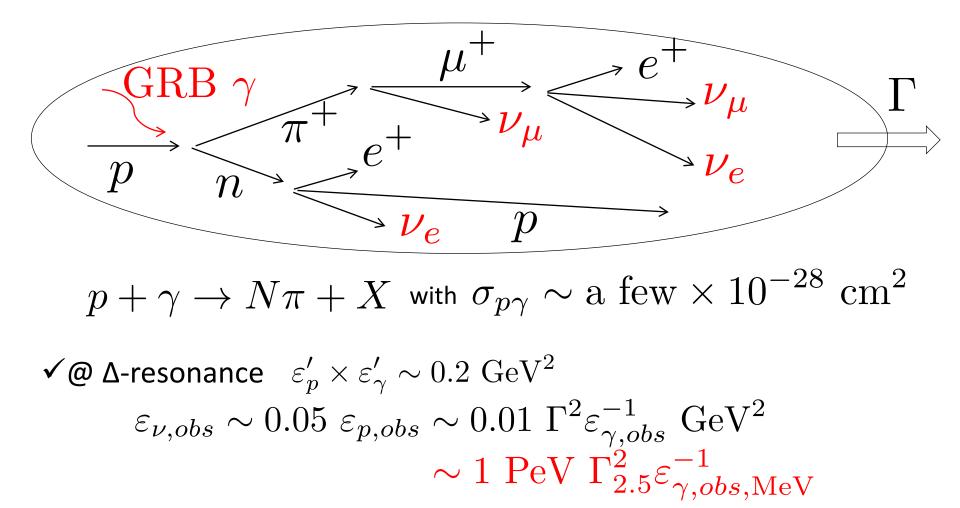
Physics of the jet **Origin of UHECRs**

– Progenitor? \rightarrow GRB-SN connection

Q. What is the GRB mechanism?

"Band" function \sim broken power law

 $\sim \varepsilon_{peak} \sim 0.1$ -1 MeV


 $\checkmark\,$ @ low energy $N_E \propto E^lpha$ $lpha \sim -1$

 \checkmark @ high energy $N_E \propto E^{eta}$ $eta \sim -(2\text{-}3)$

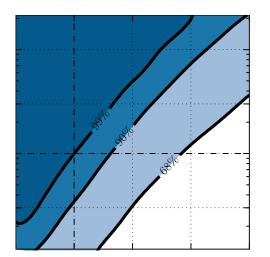
Abdo+2010

- ✓ non-thermal features \rightarrow particle acceleration?
- ✓ polarization? (e.g., Yonetoku+2012) → magnetic fields?

GRB prompt neutrinos

✓ Meson production efficiency (large astrophysical uncertainties) $f_{p\gamma} \sim 0.2 n_{\gamma} \sigma_{p\gamma} (r/\Gamma) \propto r^{-1} \Gamma^{-2} \longrightarrow F_{\nu} \propto \eta_{\rm CR} r^{-1} \Gamma^{-2}$

The GRB-UHECR hypothesis


• If not only electrons but protons are accelerated,

$$\begin{split} \varepsilon_p < erB \sim 3 \times 10^{20} \ r_{14}B_4 \ \mathrm{eV} \quad & \text{Waxman 1995} \end{split}$$

 If $E_{CR}^{iso} \sim E_{\gamma}^{iso} \sim 10^{53}, \ \mathrm{erg}$
 with $\rho_{GRB} \sim 1 \ \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ $\quad & \text{Wanderman \& Piran 2003}$

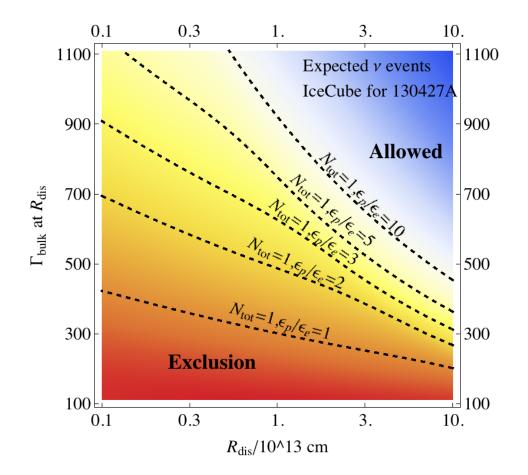
$$\square > Q_{CR} \sim 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$$

Consistent with the UHECR observations

Stacking ~1000 GRBs

Emission mechanism, the GRB-UHECR hypothesis, and so on are being tested. Way to go!

Multi-messenger obs. strategies


✓ For bigshot(s)

EM surveys 🛁 IceCube

✓ For stacking

EM surveys \longrightarrow IceCube

"The brightest GRB ever since 2010"

Shan, KK, Meszaros 2013

Multi-messenger obs. strategies

✓ For bigshot(s)

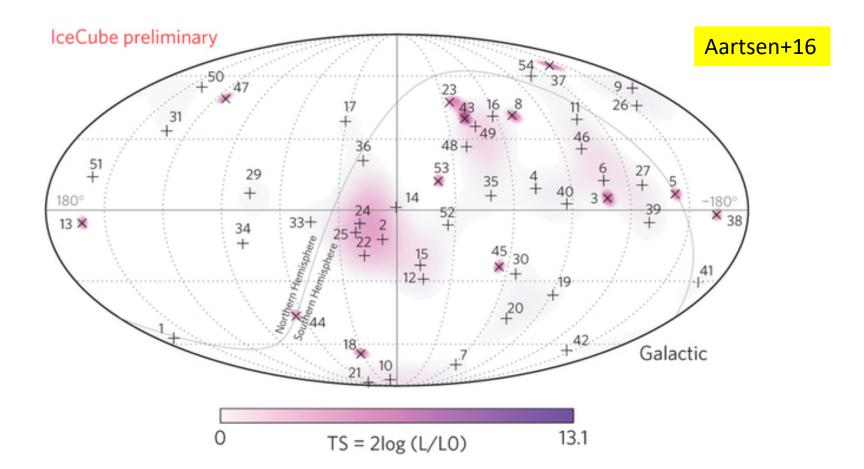
EM surveys 🛁 IceCube

✓ For stacking

EM surveys \longrightarrow IceCube

Alerts from IceCube

 $\checkmark \text{Not to be "cry wolf too often" ...} \qquad \Delta N_{\text{bg},\mu} \sim 1 \ \frac{\Delta \Omega}{1 \text{ deg}^2} \frac{\Delta t_{\text{obs}}}{1 \text{ month}} \left(\frac{E_{\nu_{\mu}}}{1 \text{ TeV}}\right)^{-3/2}$

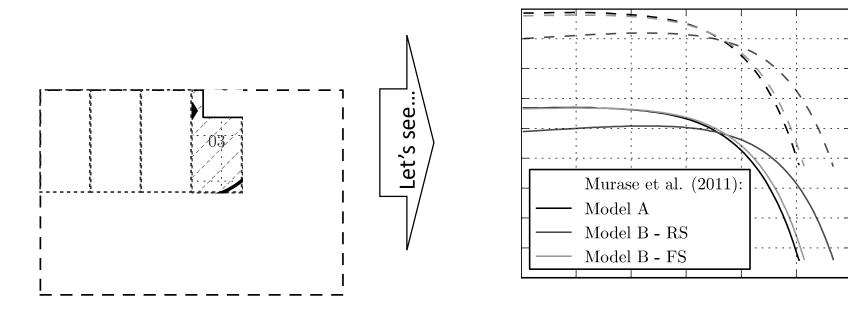

1. High energy events

2. Multiplets i.e. two or more neutrinos from the same direction within 100 s

✓ The real-time search

"In case of automatic forwarding, the median latency for triggering follow-up observatories is ~ 1 min."

High energy events

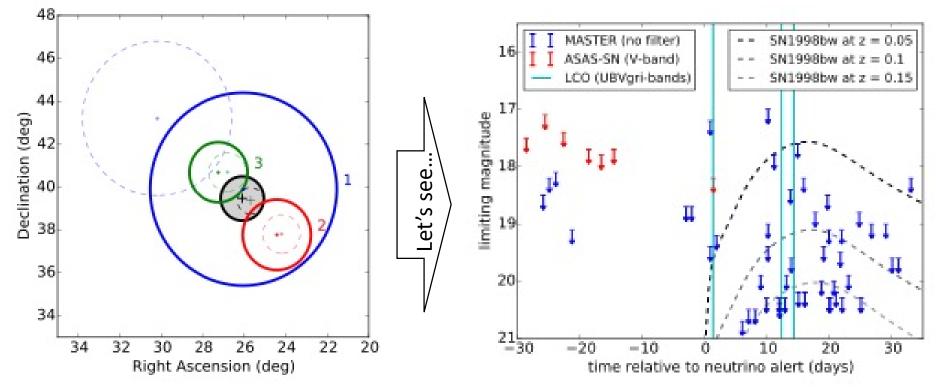


So far no association with any transient source reported, but only one single association means huge, keep on going!

Follow-up of a neutrino multiplet

A ~ TeV v doublet + SN IIn (~160 days after exp.)

"Too v bright to be true"



The significance of the chance detection is 2.2σ

Follow-up of a neutrino multiplet

A ~TeV v triplet candidate

No EM counterpart detected

The probability to detect one triplet from atm. backgrounds is 32%.

Stringent constraint on nearby energetic explosions

HE v & transients so far (my personal view)

What "we" can do

(or what have not been done)

• GRB stacking is working very well.

They are rare but EM bright and detected efficiently thanks to e.g., Swift and Fermi.

- Next target will be relatively dim in the γ-ray bands but still energetic or abundant transients, e.g.,
 - Low luminosity GRBs
 - Failed GRBs or choked jet events
 - Pulsar-driven supernovae
 - Interaction-powered supernovae
 - Tidal disruption events
 - ...
- For stacking, EM survey strategies including target selection can be optimized based on the v modeling and source distribution of each transient.

- EM followup of high energy v events is useful.
 - \checkmark So far in vain, but one single association means huge.
 - ✓ Rapid and followup of ~1 deg² and ~10 deg² fields for truck and shower events, respectively
 - \checkmark The primary target is nearby bigshots.
- HSC can give a unique contribution. (Tanaka-san's talk)
 - ✓ Even for track events(?)
 - ✓ When HSC follows up the ~ 1 deg² field for ~30 mins, there always ~ 10 CCSNe at z ~< 0.4.</p>
 - ✓ Only a minor fraction (~ 30 min/month ~ 1/1000) explode just after the trigger.
 - ✓ Effective especially for relatively rare, EM dim (so that not to be detected by other surveys), but v bright ones (e.g., choked jet HNe)

- EM followup of v multiplets is also interesting. It is even more biased to nearby bright sources. Relatively shallow surveys e.g., by ASAS-SN suffice? No need for HSC?
- There may be very v-bright but EM-dim transients. (It's fun to think about it ...)
 - ✓ how about failed SNe with choked jets, resulting in massive BH formation?
 - ✓ motivated by GW astronomy
 - ✓ Theoretical challenge:

possible to make them "very v-bright but EM-dim"

✓ Observational challenge:
 not much info about the low luminosity end of SNe
 → H!S!C!