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Introduction

Resolution of Recent Galaxy Simulations

« Recent galaxy simulations come close to reproducing

small structures in a stellar scale.

 In the right figure, red and bright regions represent SN.

https://4d2u.nao.ac.jp/t/var/download/movie.html
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Introduction

the Number of Calculation

« SN explosions occur in much smaller time scale than the

galaxy evolves.

« They should be calculated using small timesteps. This

Increases the number of calculations.
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Overhead of Communication Time

time per step [ sec ]
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How to Reduce the Num of Communication

« Compact regions need large number of integration and communication.

« Integrate compact regions as isolated regions.

Supercomputer System

High degree of parallelism

(>106 cores)
dt~10° yr

Low degree of parallelism\

(~10% cores)
dt~102 yr

#1\

(~102 cores)

ESA/Hubble &
NASA, ESO, J.
Lee and the

PHANGS-HST

#2

Team
~102
(~104 cores) j/ .
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Why and How We Predict Expansions of SN

« Before the integration, we need to predict the particles
that will have smaller time steps in the future and assign

them to isolated regions.

« By predicting the density change after a SN explosion,

we attempt to predict the particles.

« | tried to predict 3D density maps using deep learning
model with extended Memory-In-Memory Network.

« For training data, we used the result of simulations of
the expansion of a SN's ejecta shell in the turbulent ISM,

evolved by some Myrs.
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the Prediction by MIM Network

« Memory-In-Memory Network (Y. Wang et al. (2018))
learns the changes in a couple of frames in videos.

« This model can take 10 frames as input and predict 10
frames in the future.

« Red: 10 frames as input

« Blue: predicted 10 frames
iIn the future

« Left: Ground Truth

« Right: Prediction

https://github.com/Yunbo426/MIM
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Extending MIM to the 3D Prediction Model

« MIM can learn and predict only 2D images.

« We need to predict changes in the 3D distribution of
physical quantities.

« Improved MIM through increasing the dimension of the
data format and network.

0
> 10 15
20

3D data format which represents density distribution
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Training Data tor our DL Model

« To predict the expansion of SN shell, | used the results of SN
explosion simulations as ground truth and training data for DL.

Table 1 Initial condition of ISM.

Temperature
Input Energy
Total mass
Mass of a gas particle
Time for SN
Length of SN expansion
Softening Parameter

10 [K]
1057 [erg]
1086 [Mg]
10 [Mg]

1.2
0.2

3 [pc]

Myr]
Myr]
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Voxel Data as Training Data

* Volume + picture + element -> Voxel

« Convert particle data of SPH simulations to voxel data.

« The value of voxel represents the physical quantity at that point
obtained by SPH kernel function.

SPH Kernel
Function

0 5
10 |
0 x5 o 5

Voxel Data (Density)

Particle Data (SPH):Orange particles represent the
10

target particles which are hot and high-velocity.
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Prediction of the Expansion of a SN's shell

Ground Truth

Cross-sectional views of 3D-
density map

 Input: Only one 3D-density

map before the explosion

Output: 19 3D-density maps
every 3333 yrs.

Our model can learn
changes In density caused
by SN.
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Prediction of the Expansion of a SN's shell

Input ‘ ~ Simulation (Ground Truth)

t=0 300 t 0. 1 Myr

200

100

t=0.1 Myr

i
<

Prediction

300

200

100

300 t=0. 2 Myr 300

e Cross-sectional views of 3D-

density map

 Input: Only one 3D-density

map before the explosion

« Qutput: 19 3D-density maps

every 3333 yrs.

« OQur model can learn

changes In density caused
by SN.
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Method Details

t=i—1 t=i t=i+1 .
: l:;; - Output: predicted frames

—| e =] =] e = « Extended MIM learnes changes
A LA in the 3D distribution of
o Lo o s physical quantities.

* Red flows transmit the
difference in pixel (voxel)
values between a couple of

%
L
l1

=——p] MIM » MIM »| MIM F—>

e .~
/ | | frames.
=] ST-LSTM =—p1 ST-LSTM =i ST-LSTM
Xe1/Kes X/%e Xoss/Rors
. - Input: a couple of previous frames .

Y. Wang et al. (2018) Fig. 4
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Apply DL to picking up particles

* There are particles with small time-steps in the boundary
of SN ejecta’s shell.

« Using predicted density maps, | enclosed the region
where the density greatly reduced.

Initial Condition (t=0) Simulation(t=0.2Myr) Prediction(t=0.2Myr) Predicited Region Particle Distribution
. 300

250
200
150 1.

100
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Current Performance of the Algorithm

« Target particles, which experienced T>100K and dt < be4 yr.

« When we capture 90% target particles, we also do about five times as many extra
particles as target particles.

« We must make the shape of predicted regions closer to the particle distribution.
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Ratio of the num of captured
extra particles to the num of
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Green: enclosed region
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Capture ratio of the target particles.
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Summary and Future Works

* | made a trained model which predict time evolution of
density to shell expansion of SN in 3D using extended MIM
network.

« | am developing the algorithm which detect small time-step
particles using predicted 3D density maps.

« The algorithm also allocate large timestep particles to
Isolated regions although it can allocate about 100% small
timestep particles.

« Removing noise of training data.
« searching optimal parameters ( e.qg. filleter size, etc:-).
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