Early galaxy formation & its large-scale effects Pratika Dayal

Outstanding challenges

Linked to galaxy formation

- Minimum mass to which galaxies can form stars
- The star formation rates of early galaxies
- Escape of ionizing radiation
- Dust enrichment of early galaxies
- GW from the early Universe

Linked to reionization

- External (UV) feedback impact
- Topology and history of reionization
- Key reionization sources (galaxies, BHs or..?)
- Using combination of galaxy and large scale data to constrain reionization in era of 21cm cosmology

Linked to cosmology

How can early galaxies be used to probe the cosmological model, specially in context of Dark Matter models

The team in Groningen

Key collaborators and collaborations

Rychard Bouwens: Leiden University, The Netherlands Volker Bromm: University of Texas at Austin, USA Marco Castellano: Observatory of Rome, Italy Benedetta Ciardi: Max Planck Institute for Astrophysics, Germany Tirthankar Choudhury: National Centre for Radio Astronomy, India James Dunlop: Institute for Astronomy, U.K. Andrea Ferrara: Scuola Normale Superiore, Italy Stefan Gottloeber: Leibniz institute for Astrophysics, Germany Hiroyuki Hirashita: ASIAA, Taiwan Umberto Maio: Leibniz institute for Astrophysics, Germany Antonella Maselli: University of Barcelona, Spain Andrei Mesinger: Scuola Normale Superiore, Italy Volker Mueller: Leibniz institute for Astrophysics, Germany Noam Libeskind: Leibniz institute for Astrophysics, Germany Fabio Pacucci: Harvard, USA Laura Pentericci: Observatory of Rome, Italy Elena Rossi: Leiden University, The Netherlands Catherine Trott: ICRAR, Perth, Australia Livia Vallini: Nordita, Stockholm, Sweden Marta Volonteri: Observatory of Paris, France Gustavo Yepes: Universita Autonoma di Madid, Spain...

 \mathbf{F}

Modelling reionization: evolution of volume filling fraction of ionized hydrogen

Dayal & Ferrara, 2018, Physics Reports, Volume 780, pg. 1-64

Modelling reionization: (some) basic problems

Dayal & Ferrara, 2018, Physics Reports, Volume 780, pg. 1-64

Modelling reionization: (some) basic problems

Modelling reionization: (some) basic problems

Key sources and topology (patchiness) of reionization fundamental open questions

A crucial problem: Reionization feedback on galaxy formation

Neutral hydrogen : T = T(CMB)

Ionized hydrogen : T ~ 20,000 K

The UVB created during reionization can suppress the gas mass of low-mass galaxies. This suppression is a complex function of halo mass, strength of UVB, redshift of source and redshift at which the halo is irradiated by the UVB (Gnedin 2000; Sobacchi & Mesinger 2013)

Impact of reionization on galaxy formation remains debated

No impact Gas too deep in potential well to be affected by UVB

Impact of reionization on galaxy formation remains debated

No impact

Gas too deep in potential well to be affected by UVB

Maximum impact

All galaxies below certain "critical" mass/velocity completely UVB suppressed.

Impact of reionization on galaxy formation remains debated

No impact

Gas too deep in potential well to be affected by UVB

Maximum impact

All galaxies below certain "critical" mass/velocity completely UVB suppressed.

Partial impact

All galaxies below certain "critical" mass/velocity in ionized regions completely UVB suppressed.

The computational challenges: the scales required

Convergent reionization morphology at scales ~ $(200h^{-1}{\rm Mpc})^3$

- Coupling galaxy formation with reionization requires modelling over 7 orders of magnitude in physical scales.
- Following reionization over the required convergence scales requires ~280 Mpc simulations with a mass resolution of about 10^6 solar masses.
- A self-consistent full coupling would require such hydro simulations to be fully coupled with RT.

Enormous ongoing theoretical effort to model the EoR

No.	Main aim	Technique	box size [cMpc]	$M_{DM} [\mathrm{M}_{\odot}]$	Key Physics	Code [reference]
				Small-scale models		
1	SF in GMC	Resimulated	1–10 <i>R</i> _{vir}	$\sim 10^2 - 10^6$	ΑΙΚΟ	FIRE [136]
2	SF, GF, EoR	AMR	1	1840	DIKO	[137]
3	GF, EoR	AMR+RT	$4 h^{-1}$	$4 imes 10^{6}$	EO	EMMA [138]
4	UV fb	SPH+RT	5	2.5×10^{5}	EIO	[139]
5	UV fb, GF	SPH+RT	3-6 h^{-1}	$0.18 - 1.4 \times 10^{6}$	GIKO	[140]
6	ISM,CGM	AMR	9.7 h^{-1} kpc	$9.5 imes 10^4$	AIKL	[141]
7	UV fb, GF	SPH+RT	$10 h^{-1}$	$4.3 imes 10^{7}$	GIO	[142]
8	GF, EoR	Eulerian+RT	20	4.8×10^{5}	EIKO	[143]
9	GF, EoR	AMR	40	3×10^4	diko	Renaissance [144,145]
10	GF, EoR	AMR+RT	20–40 h^{-1}	$7 imes 10^{6}$	AIO	CROC [146]
				Intermediate-scale models		
1	GF, EoR	N-body+semi-numerical RT	100	3.9×10^{6}	DIKO	DRAGONS [147]
2	GF	SAM	-	$M_{min}=10^8$	CIP	DELPHI [148]
3	EoR (LG)	Eulerian+RT	91	3.5×10^{5}	EIO	CoDA [149]
4	GF, EoR	SPH+ RT	$12.5 - 100 h^{-1}$	$10^{6}-8 \times 10^{7}$	EIKO	Aurora [150]
5	f_{esc}	SPH	$10-100 \ h^{-1}$	$6 imes 10^6$ – $9 imes 10^8$	GIKLM	[151]
6	GF	SPH	$25-100 h^{-1}$	$1.2-9.7 imes 10^{6}$	FIJKM	EAGLE [133]
7	GF	Unstructured mesh	106	6.2×10^{6}	GIJK	Illustrus [152]
				Large-scale models		
1	EoR	N-body+RT	114–425 h^{-1}	$0.55-5 \times 10^{7}$	НО	[134]
2	GF	SPH	$400 h^{-1}$	1.7×10^{7}	GIJKM	BlueTides [153]
3	GF	SAM	$500 \ h^{-1}$	1.3×10^{9}	BIJKP	GALFORM [154]
4	GF+EoR	N-body+SAM_RT	160/h	9.2x10 ⁶	CIKLO	Astraeus

PD & Ferrara, 2018, Physics Reports, 780, 1

Astraeus framework: coupling galaxy formation and reionization

N-body simulation

160 h⁻¹ Mpc; 3840³

Galaxy formation (DELPHI)

Reionization (CIFOG)

Astraeus: semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS

Astraeus I: Hutter, PD et al. (arXiv:2004.08401) Astraeus II: Ucci, PD et al. (arXiv:2004.11096) Astraeus IIII: Hutter, PD et al. (arXiv:2008.13215)

Key physics implemented in Delphi

Exploring a wide range of reionization feedback models

Characteristic mass - halo mass at which half of baryons can be retained.

Models explored:

- minimum feedback only halos below a fixed virial temperature affected
 - gas affected after dynamical time
- heating models characteristic mass depends on IGM temperature (10⁴- 4x10⁴ K)
 - gas affected after dynamical time
 - escape fraction constant/increases with decreasing mass
- photoionization model characteristic mass depends on intensity of UV background

 gas affected after dynamical time
- Instantaneous model characteristic mass depends on IGM temperature (4x10⁴ K)

- gas affected instantaneously

- No impact of reionization feedback in "minimum" reionization feedback model
- For all other models, the earlier a galaxy is hit by the UV background, stronger is the impact of radiative feedback.
- Higher the IGM temperature, stronger is the impact of radiative feedback.

Astraeus I: Hutter, PD et al. (arXiv:2004.08401)

Impact of radiative feedback on gas fractions

- Gas fractions (and SFR) of low mass galaxies (<10⁹ solar masses) most affected by radiative feedback.
- Effect of radiative feedback increases with decreasing redshift.

Astraeus I: Hutter, PD et al. (arXiv:2004.08401)

Faint end slope of the UV LF - hints on radiative feedback

- Faint-end slope shallows with decreasing z.
- Even accounting for cosmic variance, at z>9, JWST observations can distinguish between different radiative feedback models

Astraeus II: Ucci, PD et al. (arXiv:2004.11096)

Where do most reionization photons come from?

- Most ionizing photons from intermediate halo mass (~10⁹⁻¹⁰) galaxies in slightly over-dense regions.
- Majority of photons from galaxies whose halo mass corresponds to underlying density
- Stronger the impact of radiative feedback, lower is contribution of lowmass halos.

Astraeus IIII: Hutter, PD et al. 2021

Emergence of metallicity scaling relations

Mass-metallicity relation already in place at $z \sim 10$ (Ucci et al., in prep, 2021)

Using a combination of 21cm and galaxy data to constrain the EoR

Cross-correlating 21cm data with (spectroscopically confirmed) galaxy data will yield information on reionization state & topology

The 21cm-LAE cross-correlation: pilot results

Combining 21cm and LAE data should allow us to differentiate between an IGM that is xx% ionized to one that is completely neutral

Hutter, Dayal et al. 2017

Synergising forthcoming facilities

IGM: SKA, Lofar2

Properties of early galaxy populations: JWST, Euclid, WFIRST, E-ELT, Athena, LISA

The emerging picture..

- Modelling reionization still open problem due to key physical uncertainties for both galaxies and IGM (z-evolution of cosmic SFRD, fesc, C).
- A key computational challenge arises due to the mass and physical scales required to model the galaxy formation-reionization interplay.
- Due to these issues, sources and topology of reionization remain outstanding problems in astrophysics.
- We are now moving towards an era of needing extremely large and resolved simulations that can simultaneously shed light on ISM physics and large-scale impact of early galaxies.