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1. Stability condition for explicit numerical
schemes (Courant-Friedrichs-Lewy condition)
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* C.- acoustic speed (sound, magnetic sound and so on)

* |ul| - velocity value

» ¥ — dissipation coefficient (viscosity, thermal conductivity)
* Ax, At —local mesh resolution and time-step

 Restriction for the time-step: CFL<1



1. In some cases (semi-)implicit schemes can
outperform the explicit ones

Heat transfer
Gas dynamics with dissipation, multi-phase flows
Stellar evolution (see e.g. Viallet et al. (2011))

Flows with a wide range of local Mach numbers from M « 1 (presence of dense
objects with high sound speed, at least incompressible regime) to M > 1 (highly
compressible regime, strong shocks) < very common in astrophysics!

Presence of sufficiently different characteristic times (e.g. rotation period vs.
acoustic time, magnetic field evolution time)



1. Typical astrophysical examples

* Collapse of rotating protostellar clouds
e Core-collapse of a massive star

* Magnetorotational supernovae

* Neutron star mergers

* fig. — 3D simulation of
magnetorotational supernova
explosion by Moesta et al.

Moesta P. et al, Astrophys. J. Lett. 785, L29 (2014)



2. Support operators method

* Difference analogues of differential operators satisfy the same
identities as the continuous ones

e Unstructured meshes (no allocated directions), we use tetrahedral
meshes

e (Static) mesh refinement is included automatically
 Laplace operator transforms to a symmetric and sign-definite matrix

* |t was used to construct a completely conservative operator-
difference scheme in Lagrange variables for 2D MHD flows (Ardeljan
N.V., Bisnovatyi-Kogan G.S., Moiseenko S.G. (2000))



2. Support operators method

 All functions are defined in linear mesh spaces (nodal, cell-nodal and so on)
e Operators are built in pairs
* First operator (e.g. GRAD) is obtained using any numerical differencing technique

* The second one (e.g. DIV) is evaluated from the difference analogue of the Green
formula (for infinite space), written in terms of mesh scalar product

(p, V- 0) + (Vp,v) =0
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* Resulting DIV operator is, thus, conjugated to initial GRAD operator

* Same technique can be used to whole set of vector calculus operators in any
geometry



2. Boundary operator

* Analogue for derivative in the boundary nodes

 Allows to include the boundary conditions of 2"4 and 3™ types in operator-
difference form

 Satisfies the Green formula with a boundary

* The approach was developed by Ardelyan et al.
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2. Nodal difference operators

* piecewise-linear finite-element basis functions on a triangular\tetrahedral Delaunne
mesh (for 2D geometry see e.g. N.V. Ardelyan, M.N. Sablin (2002))

e piecewise-constant finite-volume approach on a median-dual mesh (e.g. T. Barth (1995))
 Summation is over the cells, adjoint to the sought-for node
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2. Cell-node difference operators

* Cell-node approximation
* GRAD operator (from nodes to cells, derived with the mean theorem):

1
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Vi &= S.6. 2019,JPCS,1163 012069

* Green formula and its analogue

[ pV - odV + [ v-VpdV =0
' ' W — median-dual cell volume

N Ky V - cell volume

Y Vi-tipWi=—=)_ 5VapVi

* DIV operators (from cells to nodes):
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2. Example of cell-nodal operators application in
3D

* Heat transfer equation with anisotropic thermal conductivity in outer
layers of a magnetized neutron star
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Kondratyev et al., 2020,



3. Gas dynamics with self-gravity

dp
— v L] — (]

= (pv) + V + (pvv) = —VP — pVép

ot
= (oE) + V + [(pE + Pp] = pv - Vb,
Vi = 4nGp .

2

[ =¢e+ v?— total energy density

P =P(p,T); e =e(p,T)—general case
* P=(y —1)pe—ideal gas



3. A semi-implicit operator-difference
approximation of gas dynamical equations

* Methods for low-Mach Navier-Stokes equations can be used to built
so-called “All-Mach number solvers”, which treat only acoustic waves
implicitly

* It was shown, that only pressure in the momentum equation as well
as momentum in the energy equation should be treated implicitly
(Casulli V, Greenspan D. Int J Numer Methods Fluids.
1984;4(11):1001-1012; W. Boscheri et al. / Journal of Computational
Physics 415 (2020) 109486)

 Staggered meshes are widely used to obtain monotonic solution in
M — 0 limit, but we have built the scheme on a collocated mesh and
found no oscillations as well (see also F.Cordier et al. / Journal of
Computational Physics 231 (2012) 5685-5704)




3. A semi-implicit operator-difference
approximation of gas dynamical equations

n+l _ .n -
p - IO +Vx_(pﬂv?l):0

n+ls,n+1 __ n N
— T 4 Ve (V" @ V) + VP = 0
n+1 e -+ V_‘E n+1 n fn . 2\n
P ( 9 ) P 4+ Vx . (pnvn (VQ) ) 4+ vx ) ((eﬂ—{—l +
T

Pn—l—l

p?l—l— 1

e To approach to a second order in space, we use a linear
reconstruction of conservative variables in advection fluxes (Barth,
T.J., Jespersen, D.C, 1989, AIAA Paper, 89-0366) with
Venkatakrishnan slope limiters (Venkatakrishnan, V., 1993, Technical

Report AIAA-93-0880)



3. A semi-implicit operator-difference
approximation of gas dynamical equations

* To obtain monotone profiles, we use a Rusanov-type dissipation,
which only depends on the flow velocity
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u = (p, pv, pE)
F=(pv,pv®v,pvE)

* We have developed 2D and 3D cartesian versions of the hydro code



3. A semi-implicit operator-difference
approximation of gas dynamical equations

* By substituting (pv)™*! in the energy equation, the nonlinear elliptic
equation for a pressure can be obtained

* It can be solved iteratively by Newton-type methods (r-iterations
(Picard) + linear solver, see e.g. Dumbser, Casulli (2016))
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4. Test calculations — Riemann problem

* Sod shock tube (150 nodes, t = 0.44, 0<x<2), comparison to 1D HLL
scheme with good resolution

RHO

0 02 04 06 08 1

12 14 16 18 2

1

091

08r

0.7

06

05

047

03[

0.2

01

Hereafter we consider an ideal gas withy = 1.4
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The method is about 2-3 times
slower, than the explicit scheme
for the shock tube calculations
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4. Test calculations — Sedov-Taylor blast wave

2D:t=0.067; T = 0.5T44,~3 — 47,5

For 3D case at larger times T = 0.5744,~10 — 2074,



4. Test calculations — slowly moving contact

discontinuity

* The semi-implicit scheme is about 50 times faster, than the explicit solver

 Flow profile has a better quality due to lower numerical dissipation
(compared to second-order LLF scheme with linear reconstruction of
primitive variables)
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N=150 nodes, t = 139,
Vx=0.01,x0=0.1

500 time-steps with the semi-implicit scheme
Correspond to 40000 time-steps of an implicit
Godunov-type scheme

Kondratyev I.A., Moiseenko S.6., 2021, in preparation



4. Test problems with self-gravity — Poisson solver

2
N + 22

e Poisson equation withr.h.s. 7

* Dirichlet boundary conditions, G=1
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4. Test computations for the dust cloud
collapse (P = 0)

* At not very large times (r(t)/rO > 10) a solution on a low-resolution
mesh fits well with analytics (Colgate S.A., White R.H., Astrophys J,

143, 626 (1966))
);\Density (cross-section) /QD\

t=1.85
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Conclusion and future plans

A three-dimensional semi-implicit operator-difference gas dynamical solver on an
unstructured tetrahedral mesh is developed for astrophysical flows with self-gravity

* We plan to extend the scheme to the second order in time and to provide more tests on
large meshes

It is also planned to develop a massively-parallel MHD version of this code for studying

magnetorotational processes in rotating protostellar clouds and core-collapse
supernovae

Thank you for attention!



