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1. Stability condition for explicit numerical 
schemes (Courant-Friedrichs-Lewy condition)

• 𝑐𝑠- acoustic speed (sound, magnetic sound and so on)

• 𝑢 - velocity value

• χ – dissipation coefficient (viscosity, thermal conductivity)

• Δx, Δt – local mesh resolution and time-step

• Restriction for the time-step: CFL<1

𝐶𝐹𝐿ℎ𝑦𝑑𝑟𝑜 = max(
𝑢 + 𝑐𝑠
Δx

)Δt

𝐶𝐹𝐿ℎ𝑒𝑎𝑡 = max(
χ

Δ𝑥2
)Δt

𝐶𝐹𝐿𝑎𝑑𝑣 = max(
𝑢

Δx
)Δt



1. In some cases (semi-)implicit schemes can 
outperform the explicit ones

• Heat transfer

• Gas dynamics with dissipation, multi-phase flows

• Stellar evolution (see e.g. Viallet et al. (2011))

• Flows with a wide range of local Mach numbers from 𝑴 ≪ 𝟏 (presence of dense 
objects with high sound speed, at least incompressible regime) to 𝑴 ≫ 𝟏 (highly 
compressible regime, strong shocks)  very common in astrophysics!

• Presence of sufficiently different characteristic times (e.g. rotation period vs. 
acoustic time, magnetic field evolution time)



1. Typical astrophysical examples

• Collapse of rotating protostellar clouds

• Core-collapse of a massive star

• Magnetorotational supernovae

• Neutron star mergers

• fig. – 3D simulation of 
magnetorotational supernova 
explosion by Moesta et al.

Moesta P. et al, Astrophys. J. Lett. 785, L29 (2014)



• Difference analogues of differential operators satisfy the same 
identities as the continuous ones

• Unstructured meshes (no allocated directions), we use tetrahedral 
meshes

• (Static) mesh refinement is included automatically

• Laplace operator transforms to a symmetric and sign-definite matrix

• It was used to construct a completely conservative operator-
difference scheme in Lagrange variables for 2D MHD flows (Ardeljan 
N.V., Bisnovatyi-Kogan G.S., Moiseenko S.G. (2000))

2. Support operators method



• All functions are defined in linear mesh spaces (nodal, cell-nodal and so on)

• Operators are built in pairs

• First operator (e.g. GRAD) is obtained using any numerical differencing technique

• The second one (e.g. DIV) is evaluated from the difference analogue of the Green 
formula (for infinite space), written in terms of mesh scalar product

• Resulting DIV operator is, thus, conjugated to initial GRAD operator

• Same technique can be used to whole set of vector calculus operators in any 
geometry

2. Support operators method

Ardelyan N.V., Kosmachevskii K.V., 
Chernigovskii S.V. (1987)



• Analogue for derivative in the boundary nodes 

• Allows to include the boundary conditions of 2nd and 3rd types in operator-
difference form

• Satisfies the Green formula with a boundary

• The approach was developed by Ardelyan et al.

2. Boundary operator

Ardelyan N.V., Kosmachevskii K.V., 
Chernigovskii S.V. (1987)



2. Nodal difference operators

gradient

divergence

boundary operator

• piecewise-linear finite-element basis functions on a triangular\tetrahedral Delaunne
mesh (for 2D geometry see e.g. N.V. Ardelyan, M.N. Sablin (2002))

• piecewise-constant finite-volume approach on a median-dual mesh (e.g. T. Barth (1995))

• Summation is over the cells, adjoint to the sought-for node



• Cell-node approximation

• GRAD operator (from nodes to cells, derived with the mean theorem):

• Green formula and its analogue

• DIV operators (from cells to nodes):

Kondratyev I.A., Moiseenko
S.G. 2019,JPCS,1163 012069

2. Cell-node difference operators

W – median-dual cell volume
V – cell volume



2. Example of cell-nodal operators application in 
3D

• Heat transfer equation with anisotropic thermal conductivity in outer 
layers of a magnetized neutron star

𝑇𝑐𝑜𝑟𝑒 = 2 ∙ 108𝐾
Θ𝑏 = 45°

β = 0.5
𝑻𝒆𝒇𝒇 = 𝟏. 𝟒 ∙ 𝟏𝟎𝟔𝑲

Kondratyev et al., 2020, 
Mon. Not. R. Astron. 
Soc, 497, 2883



3. Gas dynamics with self-gravity

• 𝐸 = 𝑒 +
𝑣2

2
– total energy density

• 𝑃 = 𝑃 𝜌, 𝑇 ; 𝑒 = 𝑒 𝜌, 𝑇 – general case

• 𝑃 = (𝛾 − 1)𝜌𝑒 – ideal gas



3. A semi-implicit operator-difference 
approximation of gas dynamical equations

• Methods for low-Mach Navier-Stokes equations can be used to built 
so-called “All-Mach number solvers”, which treat only acoustic waves 
implicitly

• It was shown, that only pressure in the momentum equation as well 
as momentum in the energy equation should be treated implicitly 
(Casulli V, Greenspan D. Int J Numer Methods Fluids. 
1984;4(11):1001-1012; W. Boscheri et al. / Journal of Computational 
Physics 415 (2020) 109486)

• Staggered meshes are widely used to obtain monotonic solution in
𝑴 → 𝟎 limit, but we have built the scheme on a collocated mesh and 
found no oscillations as well  (see also F.Cordier et al. / Journal of 
Computational Physics 231 (2012) 5685–5704)



3. A semi-implicit operator-difference 
approximation of gas dynamical equations

• To approach to a second order in space, we use a linear
reconstruction of conservative variables in advection fluxes (Barth,
T.J., Jespersen, D.C., 1989, AIAA Paper, 89-0366) with
Venkatakrishnan slope limiters (Venkatakrishnan, V., 1993, Technical
Report AIAA-93-0880)



3. A semi-implicit operator-difference 
approximation of gas dynamical equations

• To obtain monotone profiles, we use a Rusanov-type dissipation, 
which only depends on the flow velocity

• We have developed 2D and 3D cartesian versions of the hydro code



3. A semi-implicit operator-difference 
approximation of gas dynamical equations

• By substituting (𝜌𝐯)𝑛+1 in the energy equation, the nonlinear elliptic 
equation for a pressure can be obtained 

• It can be solved iteratively by Newton-type methods (r-iterations 
(Picard) + linear solver, see e.g. Dumbser, Casulli (2016))

Stability condition

𝜏 < 𝑚𝑖𝑛
∆𝑥

𝒗

Usage of support operator 
approach allows to construct 
a matrix with good properties



4. Test calculations – Riemann problem

• Sod shock tube (150 nodes, t = 0.44, 0<x<2), comparison to 1D HLL 
scheme with good resolution

P Vx

Hereafter we consider an ideal gas with 𝛾 = 1.4

The method is about 2-3 times 
slower, than the explicit scheme 
for the shock tube calculations

RHO



4. Test calculations – Sedov-Taylor blast wave

2D: t = 0.067; 𝜏 = 0.5𝜏𝑎𝑑𝑣~3 − 4𝜏𝑐𝑓𝑙

For 3D case at larger times 𝜏 = 0.5𝜏𝑎𝑑𝑣~10 − 20𝜏𝑐𝑓𝑙



4. Test calculations – slowly moving contact 
discontinuity

• The semi-implicit scheme is about 50 times faster, than the explicit solver

• Flow profile has a better quality due to lower numerical dissipation
(compared to second-order LLF scheme with linear reconstruction of
primitive variables)

Kondratyev I.A., Moiseenko S.G., 2021, in preparation

RHO N=150 nodes, t = 139, 
Vx = 0.01, x0 = 0.1

500 time-steps with the semi-implicit scheme
Correspond to 40000 time-steps of an implicit 
Godunov-type scheme



• Poisson equation with r.h.s.

• Dirichlet boundary conditions, G=1

4. Test problems with self-gravity – Poisson solver

PSI PSI_acc



4. Test computations for the dust cloud 
collapse (P = 0)

• At not very large times (r(t)/r0 > 10) a solution on a low-resolution 
mesh fits well with analytics (Colgate S.A., White R.H., Astrophys J, 
143, 626 (1966)) 

t = 1.85t = 0

Density (cross-section)



Conclusion and future plans

• A three-dimensional semi-implicit operator-difference gas dynamical solver on an
unstructured tetrahedral mesh is developed for astrophysical flows with self-gravity

• We plan to extend the scheme to the second order in time and to provide more tests on
large meshes

• It is also planned to develop a massively-parallel MHD version of this code for studying
magnetorotational processes in rotating protostellar clouds and core-collapse
supernovae

Thank you for attention!


