### MHD waves and instabilities: Welcome to Pandora's box!

#### **Rony Keppens**





Centre for mathematical Plasma-Astrophysics Department of Mathematics, KU Leuven

ChalCA-III 2021



### MHD wave signals

- static homogeneous plasma: slow, Alfvén, fast wave pairs
  - $\Rightarrow$  7 waves: one entropy  $\omega$  = 0 and 3 pairs forward/backward



# Goedbloed et al, 2019, Cambridge University Press

Magnetohydrodynamics of Laboratory and Astrophysical Plasmas

Hans Goedbloed, Rony Keppens and Stefaan Poedts

#### basis of all MHD spectroscopy

- $\Rightarrow$  helio- and asteroseismology
- $\Rightarrow$  MHD spectroscopy of fusion plasmas
- $\Rightarrow$  solar coronal seismology
- $\Rightarrow$  magnetoseismology of accretion disks

PROMINEN

3/15

 $\Rightarrow \dots$ 

modern spectroscopy tool (Niels/Jordi)

⇒ http://legolas.science





#### start from full MHD equations



• linearize all quantities, e.g.  $\mathbf{B} = \mathbf{B}_0(u_1) + \mathbf{B}_1(u_1, u_2, u_3, t)$ 

ChalCA-III 2021



• use generic  $(u_1, u_2, u_3)$  to denote either of



 $\Rightarrow$  still allows

$$\rho_0 = \rho_0(u_1), p_0 = p_0(u_1), T_0 = T_0(u_1),$$

• • • • • • •

PROMINENT



1D force/thermal equilibrium obeys:

$$\begin{pmatrix} p_0 + \frac{1}{2}B_0^2 \end{pmatrix}' + \rho_0 g - \frac{\varepsilon'}{\varepsilon} \frac{\text{centrifugal/tension}}{(\rho_0 v_{02}^2 - B_{02}^2) = 0,} \\ \text{total pressure} \\ \text{gradient} \quad \frac{1}{\varepsilon} \left(\varepsilon \kappa_{\perp} T_0'\right)' - \rho_0 \mathscr{L}_0 = 0, \\ \text{energy balance} \end{cases}$$

 $\Rightarrow \varepsilon = 1 \text{ or } \varepsilon = r \text{ for slab/cylinder case}$ 

 e.g. gravitationally stratified, magnetized atmosphere; solar coronal loop or fluxtube; radially stratified astrophysical jet; radially stratified accretion disk; ...



• all linear quantities: Fourier in  $(u_2, u_3)$ , eigenfrequency  $\omega$  in

$$f_1 = \hat{f}_1(u_1) \exp\left[i(k_2u_2 + k_3u_3 - \omega t)\right]$$

- discretize with finite elements in u<sub>1</sub>
  - $\Rightarrow$  generalized eigenvalue problem!
  - $\Rightarrow$  determine all  $\omega$ - $\hat{f}_1$  combinations!
- opensource and fully documented:



ChalCA-III 2021





#### 2020 ApJS 251 25, Claes et al doi:10.3847/1538-4365/abc5c4

erc

- magnetized atmosphere with gravity:  $\omega^2 k^2$  diagrams
  - $\Rightarrow$  gravito-MHD modes: generalizing *p* and *g* modes



#### 2020 ApJS 251 25, Claes et al doi:10.3847/1538-4365/abc5c4

• example for current-carrying fluxtube:  $\omega^2$  as twist in **B**<sub>0</sub>(*r*) varies

 $\Rightarrow$  interchanges at specific *q*-values

erc



magnetized astrophysical jet (Baty & RK, 2002):

erc

 $\Rightarrow$  Kelvin-Helmholtz and Current-Driven modes



• full info on eigenfunctions avaialable: for KH versus CD mode



#### 1D disk configurations [Keppens et al, ApJ Lett. 569, 2002]

• MHD force balance in disk equatorial plane

$$\left(p + \frac{B_{\varphi}^2 + B_Z^2}{2}\right)' = \rho\left(\frac{v_{\varphi}^2}{R} - \frac{GM_*}{R^2}\right) - \frac{B_{\varphi}^2}{R}$$

 $\Rightarrow$  total pressure, field line tension + Keplerian



• power laws  $R^{\nu}$ , fix  $\beta = 2p/B^2$ , helicity  $\alpha = -B_{\varphi}/B_Z$ 

erc

 $\Rightarrow$  thin flaring disk: aspect ratio  $\epsilon = H/R \ll 1$ 

# Weakly magnetized disk

erc

- $\beta = 2000$ , helicity  $\alpha = 1$ , aspect ratio  $\epsilon = 0.1$ 
  - $\Rightarrow$  axisymmetric modes, vanishing Doppler shift



PROMINENT

- backward & forward fast  $F^{\pm}$ , Alfvén  $A^{\pm}$ , slow  $S^{\pm}$
- HD epicyclic modes, frequency  $\kappa^2 \equiv 2v_{\theta,0}(rv_{\theta,0})'/r^2$ 
  - $\Rightarrow$  discrete modes within  $-\kappa \leq \omega \leq \kappa$
- Magneto-rotational instability with slow subspectrum

# Weakly magnetized disk

erc

- $\beta = 2000$ , helicity  $\alpha = 1$ , aspect ratio  $\epsilon = 0.1$ 
  - $\Rightarrow$  axisymmetric modes, vanishing Doppler shift



< A

- backward & forward fast  $F^{\pm}$ , Alfvén  $A^{\pm}$ , slow  $S^{\pm}$
- HD epicyclic modes, frequency  $\kappa^2 \equiv 2v_{\theta,0}(rv_{\theta,0})'/r^2$ 
  - $\Rightarrow$  discrete modes within  $-\kappa \leq \omega \leq \kappa$
- Magneto-rotational instability with slow subspectrum

PROMINENT

• non-ideal MHD effects, e.g. resistivity  $\rightarrow$  new modes  $\Rightarrow$  tearing mode behind reconnection, scales as  $\eta^{3/5}$ 



### Take-Home

- Parametric studies of full MHD spectrum of 1D equilibria
  - $\Rightarrow$  role of  $\mathbf{k} \cdot \mathbf{B} = 0$  surfaces (minimal field line bending)
  - $\Rightarrow$  non-axisymmetric modes, interacting/overlapping continua

not all stella!

- $\Rightarrow$  organized 4-fold continua and fast accumulation points
- Disks: Much more than just MRI at weak field!!!



• opensource and fully documented:

← http://legolas.science ⇒ Claes et al., 2020, ApJ Supplement Series 251, 25 erc ← i:10.3847/1538-4365/abc5c4