A Proper Discretization of Hydrodynamic Equations in Cylindrical Coordinates for Astrophysical Simulations

Tomoyuki Hanawa (Chiba U.)

Episodic gas accretion onto a protostar with gas disk cf. Dullemond+19, Kueffimier+19

Cloudlet capture by a young star

3D simulation on the Cylindrical Grid, (r, φ, z)

Free-stream preservation in addition to mass, angular momentum & energy conservation

Tomoyuki Hanawa & Yosuke Matsumoto (Chiba U.) ApJ, 907, 43 (2021)

Advantages: easy to handle (1) angular momentum conservation, and (2) axisymmetric equilibrium (disk & torus) **Problems** in the Cylindrical Coordinates, (r, φ, z) .

1. Apparently Large Centrifugal Force around r = 0

$$\begin{aligned} \boldsymbol{a} &= \left(\ddot{r} - r\dot{\varphi}^2\right)\boldsymbol{e}_r + \left(r\ddot{\varphi} + 2\dot{r}\dot{\varphi}\right)\boldsymbol{e}_{\varphi} + \ddot{z}\boldsymbol{e}_z \\ &= \left(\dot{v}_r - \frac{\boldsymbol{v}_{\varphi}^2}{r}\right)\boldsymbol{e}_r + \left(\dot{v}_{\varphi} + \frac{\boldsymbol{v}_r\boldsymbol{v}_{\varphi}}{r}\right)\boldsymbol{e}_{\varphi} + \dot{v}_z\boldsymbol{e}_z \\ &= \left(\dot{v}_r - \frac{j^2}{r^3}\right)\boldsymbol{e}_r + \frac{\dot{j}}{r}\boldsymbol{e}_{\varphi} + \dot{v}_z\boldsymbol{e}_z \end{aligned}$$

2. Tight CFL condition ($\Delta t < r\Delta \varphi/|v+c|$) around r = 0 if $\Delta \varphi$ is fixed.

3. Uniform flow, (ρ_0, v, P_0) , is an exact solution of the differential equations but not of the discretized form in (r, φ, z) .

(Not free-stream preserving)

We have removed these technical problems. Our method is based on the finite volume scheme.

Hydrodynamic Equations in the conservation form

Mass, (angular) momentum, and energy conservation

$$\frac{\partial}{\partial t} \begin{bmatrix} r\rho \\ r\rho v_r \\ r^2 \rho v_\varphi \\ r\rho v_z \\ r\rho E \end{bmatrix} + \frac{\partial}{\partial r} \begin{bmatrix} r\rho v_r \\ r(\rho v_r^2 + P) \\ r^2 \rho v_r v_\varphi \\ r\rho v_r v_z \\ r\rho v_r H \end{bmatrix} + \frac{\partial}{\partial \varphi} \begin{bmatrix} \rho v_\varphi \\ \rho v_\varphi v_r \\ r(\rho v_\varphi^2 + P) \\ \rho v_\varphi v_z \\ \rho v_\varphi H \end{bmatrix} + \frac{\partial}{\partial z} \begin{bmatrix} r\rho v_z \\ r\rho v_z v_r \\ r^2 \rho v_z v_\varphi \\ \rho v_\varphi v_z \\ \rho v_\varphi H \end{bmatrix} = \begin{bmatrix} r\rho g_r + \frac{\rho v_\varphi^2 + P}{r^2 \rho g_\varphi} \\ r\rho g_z \\ r\rho g \cdot v \end{bmatrix} \text{ centrifugal force } \\ \frac{\partial U}{\partial t} + \nabla \cdot F = 0 \quad \text{volume integral} \\ \frac{\partial}{\partial t} (\rho v) + \nabla \cdot (\rho v v + PI) = \rho g, \\ \frac{\partial}{\partial t} \iint_{V_g} \rho v dV + \iint_{\partial V_g} (\rho v v + PI) \cdot dS = \iint_{v_g} \rho g dV. \end{bmatrix}$$

Caution in the volume integral:

We should appreciate the fact that the unit vectors, e_r and e_{φ} , on the azimuthal cell surface are different from those at the cell center.

4 Improvements in the numerical method

(1) Evaluating the centrifugal force on the azimuthal cell surface (not at the cell center).

(2) Coarse grid near the origin cf. AMR $r\Delta \varphi \simeq \Delta r$

(3) Interpolating v_n and v_t instead of v_r and v_{φ} .

(4) Correction factors for surface area

$$\Delta \boldsymbol{S}_{i+1/2} \cdot \boldsymbol{e}_r = f_{i+1/2} r_{i+1/2} \Delta \varphi$$

 $\int_{\varphi_j - \Delta \varphi/2}^{\varphi_j + \Delta \varphi/2} \boldsymbol{e}_r(\varphi) \, d\varphi \neq \, \boldsymbol{e}_r(\varphi_j) \Delta \varphi$

Surface Area Correction Factors

Cell Type	(A)	(B)	(C)	
f _ρ	$\frac{\Delta \varphi}{2} \left(\sin \frac{\Delta \varphi}{2} \right)^{-1}$	$\frac{\Delta \varphi}{2} \left(\sin \frac{\Delta \varphi}{2} \right)^{-1} \left[1 - \frac{2r_{l+1/2}}{\Delta r_l} \sin^2 \frac{\Delta \varphi}{8} \right]$	$\frac{\Delta \varphi}{4} \left(\tan \frac{\Delta \varphi}{4} \right)^{-1}$	mass, energy, v_z
f _r	$\left(\frac{\Delta \varphi}{2}\right) \left(\tan \frac{\Delta \varphi}{2}\right)^{-1}$	$\frac{\Delta \varphi}{\sin \Delta \varphi} \Big(1 - \frac{r_{i+1/2} + \Delta r_i}{\Delta r_i} \sin^2 \frac{\Delta \varphi}{4} \Big)$	$\frac{\Delta \varphi}{\sin \Delta \varphi} \Big[1 - 2 \sin^2 \frac{\Delta \varphi}{4} \Big]$	v_r
fφ	$\frac{\Delta \varphi}{\sin \Delta \varphi}$	$\frac{\Delta \varphi}{\sin \Delta \varphi} \left[1 - \frac{r_{i+1/2}^2}{r_i \Delta r_i} \sin^2 \frac{\Delta \varphi}{4} \right]$	$\frac{\Delta \varphi}{2} \left(\sin \frac{\Delta \varphi}{2} \right)^{-1}$	$j = rv_{\varphi}$

Type (A)
$$\Delta \varphi_{i-1/2} = \Delta \varphi_i = \Delta \varphi_{i+1/2}$$

Type (B) $\Delta \varphi_{i-1/2} = \Delta \varphi_i = 2\Delta \varphi_{i+1/2}$
Type (C) $2\Delta \varphi_{i-1/2} = \Delta \varphi_i = 2\Delta \varphi_{i+1/2}$

The correction factors are fixed so that a uniform flow, i.e., constant ρ , v, P, is an exact solution of the finite difference equations.

free-stream preserving

Sod Shock Tube Problem (Comparison)

AMR-type variable $\Delta \phi$

The current standard scheme does not work even at $\Delta \varphi = \pi/96$ uniform $\Delta \varphi = \pi/96$ in standard ρ (L) standard, (R) proposed, *t*=0.80 Δ*r*=0.1 1.2 Δ*t*=0.00057 for standard 1.0 Spike 1.0 **Δ***t*=0.02 for proposed 0.5 0.8 ∽ 0.0 0.6 inhomogeneity 0.4 -0.5 0.2 -1.0 0.0 -0.5 0.0 0.5 -1.0 1.0 Χ

Standard

AMR-type variable $\Delta \phi$

Proposed

3D test: A gas clump across the *z*-axis

Conclusion

- 1. We can achieve angular momentum conservation and free-streaming simultaneously.
- 2. We should use the local Cartesian coordinates oriented on the cell surface when evaluating the numerical flux.
- 3. We should discriminate the change in the velocity due to a wave from that due to the coordinate.